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Abstract. Let A be a finite abelian group and G be a digraph. The boundary of a func-
tion f:E(G)— A is a function df:V(G)— A given by 0f(v) =3, cavings f (€) —
D centerings J (€). The graph G is A-connected if for every b:V(G)— A with
> vev(g b(v) =0, there is a function f : E(G) — A4 — {0} such that 0 = b. In [J. Combi-
natorial Theory, Ser. B 56 (1992) 165-182], Jaeger et al showed that every 3-edge-
connected graph is A-connected, for every abelian group A4 with |4| > 6. It is con-
jectured that every 3-edge-connected graph is A-connected, for every abelian group A4
with |A4| > 5; and that every 5-edge-connected graph is A-connected, for every abelian
group A with |4] > 3.

In this note, we investigate the group connectivity of 3-edge-connected chordal graphs
and characterize 3-edge-connected chordal graphs that are A-connected for every finite
abelian group 4 with |4] > 3.

1. Introduction

We consider finite graphs which may contain loops or multiple edges. The groups

considered in this paper are finite Abelian (additive) groups. For a finite Abelian

group A, the additive identity of 4 will be denoted by 0 (zero) throughout this

paper. Let G and H be graphs. If H is a subgraph of G, then we write H < G.
Let G be a digraph. For a vertex v € V' (G), let

E;(v) ={(u,v) e E(G) :ue V(G)}, and E;(v)={(v,u) € E(G):ueV(G)}.

The subscript G may be omitted when G is understood from the context.
Let A be a nontrivial Abelian group and let A* denote the set of nonzero ele-
ments in 4. Define

F(G,A)={f:E(G)— A} and F*(G,A)={f:E(G)— A"}.
For each f € F(G, A), the boundary of f'is a function df : V(G) — A defined by
ofwy = > flo- Y fl).
ee E*(v) eeE~(v)

where “3 " refers to the addition in A. Throughout this paper, we shall adopt the
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following convenience: if X = E(G) and if f: X — A4 is a function, then we re-
gard f as a function f : E(G) — A4 such that f(e) =0 for allee E(G) — X.

Let G be an undirected graph and 4 be an abelian group. A function
b:V(G) — A is called an A-valued zero sum function on G if 3, b(v) =0 in
G. The set of all A-valued zero sum functions on G is denoted by Z(G, 4). A graph
G is A-connected if G has an orientation G’ such that for every function
be Z(G, A), there is a function f € F*(G’, A) such that b = df. For an Abelian
group A, let {(4) denote the family of graphs that are A-connected. It is observed
in [7] that that G € {4 is independent of the orientation of G.

An A-nowhere-zero-flow (abbreviated as A-NZF) in G is a function
f € F*(G, A) such that 0f = 0. The nowhere-zero-flow problems were introduced
by Tutte [14], and recently surveyed by Jaeger in [6].

The concept of A-connectivity was introduced by Jaeger et al in [7], where A-
NZF’s were successfully generalized to A-connectivities. A concept similar to the
group connectivity was independently introduced in [8], with a different motiva-
tion from [7].

Tutte’s 3-flow conjecture ([2], Unsolved Problem 48) states that every 4-edge-
connected graph has a Z3-NZF. It is known that planar graphs and projective
planar graphs are two graph families in which Tutte’s 3-flow conjecture holds ([12]
and [16]). In this note, we shall show (in Section 4) that every 4-edge-connected
chordal graph is A-connected, for each Abelian group 4 with |4| > 3. In particular,
every 4-edge-connected chordal graph admits a Z3-NZF. There are examples, pre-
sented in Section 4, showing that both being chordal and being 4-edge-connected
cannot be relaxed in this result. We also investigate 3-edge-connected chordal
graphs in Section 4 and characterize those 3-edge-connected chordal graphs
which are not Zz-connected.

In Section 2, former related results are presented and in Section 3, some prop-
erties on group connectivity will be developed. These properties will be used in
Section 4 to prove the main results.

2. Prior Results
We present some prior results on Z3-NZF’s in this section.

Theorem 2.1 (Grotzsch [4]). Every 4-edge-connected planar graph has a Z3-NZF.

Theorem 2.2 (Tutte [15]). Let G be a 3-regular graph. Then G has a Z3-NZF if and
only if G is bipartite.

Theorem 2.3 (Griibaum [5], Aksionov [1], Steinberg and Younger [11] and
Thomassen [13]). Every 2-edge-connected graph with at most three edge cuts of size 3
and embedable in the plane has a Z3-NZF.

Theorem 2.4 (Steinberg and Younger [11]). Every 2-edge-connected graph with at
most one edge cut of size 3 and embedable in the projective plane has a Z3-NZF.
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Theorem 2.5 (Lai and Zhang [10]). Let G be a k-edge-connected graph with t odd
vertices. If k > 4[log,t], then G has a Z3-NZF.
It is conjectured in [7] that every 5-edge-connected graphs is in {Z3).

3. Some Properties

We need the notion of graph contraction. Let G be a graph and let X < E(G) be
an edge subset. The contraction G/X is the graph obtained from G by identifying
the two ends of each edge e in X and deleting e. If X = {e}, then we write G/e for
G/{e}. If H is a subgraph of G, then we write G/H for G/E(H). Note that even G
is a simple graph, the contraction G/X may have loops and multiple edges.

Let G be a graph and let ve V(G) be a vertex of degree m > 4. Let
N(v) = {v1,v2,...,v,} denote the set of vertices adjacent to the vertex v, and let
X = {vov1,vv2}. The graph G, y) is obtained from G — {vv;, v0,} by adding a new
edge that joins v; and v,. If m = 2k is even and if

M = {1, v} {v2, ka2 s o5 {0k, 026}

is a way to pair the vertices in N(v), then G, » denotes the graph obtained from
G — v by adding k new edges ¢; joining v; and vy, (1 <i<k).

Lemma 3.1. Let A be an Abelian group. Let G be a graph and let v e V(G) be a
vertex of degree m > 4.

(i) If for some X of two edges incident with v in G, G, y) € {A), then G € {A).

(i) Let m be even, let M be a way to pair the vertices of N(v) such that
G, i) € {A), and let b € Z(G, A) be given. If b(v) = 0 € A, then there is a function
f € F (G, A) such that 0f = b.

(iii) (Corollary 2.3, [7]) Let e = viv2 be an edge in G. If G —e € <{A), then
Ge(A>.

Proof. (i). We may assume that N(v) = {vy,...,v,} and X = {vv;,vv,}. Since
being A-connected is a property independent of the orientation, we may assume
that in G, the two edges in X are oriented from v; to v, and from v to vp; and we
may assume that in Gy, y|, the newly added edge (denoted by vjvy) is oriented from
v1 to vy.

Let beZ(G,4). Since V(G)= V(G yx]), beZ(Gyx),A) also. Since
Gy, x) € {A), there is a function '€ F*(G}, yj,4) such that df’ =b. Define
[ eF(G,A) by f(e)=f'(e) if ee E(G)—X, and f(vv) = f(vr2) = f'(v1v2).
Then it is easy to see that f € F*(G, A) such that 0/ = b. This proves (i).

(ii). The proof for (ii) is similar to that for (i), and so is omitted. O

For a subgraph H of a graph G, let Ag(H) denote the vertices in V(H) that are
adjacent to some vertices in V(G) — V(H) in G. (Vertices in Ag(H ) are called the
vertices of attachment of H in G.)

Proposition 3.2. For any Abelian group A, {A) is a family of connected graphs
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satisfying each of the following holds:

(Cl) Kl € <A>>
(C2) ifee E(G) and if G € {A), then G/e € {A), and
(C3) if He<A) and if G/H € {A), then G € {A4).

(A4 family of connected graphs satisfying (C1)—(C3) is called a complete family, first
introduced by Catlin [3]. In fact, Catlin defined and studied complete families in a
more general way. For more properties of complete families, see [3].)

Proof. Let A be an Abelian group. By Proposition 2.1 of [7], every member in {4 )
is connected. Note that (C1) follows from the definition of (A4 trivially.

Let e € E(G) and assume that G € {4). Let G’ be G/e with an orientation, let
the two ends of e be u and v and let w denote the vertex in G’ to which u and v are
identified. Let G also denote the digraph with the same orientation as G’ on the
edges in E(G) — {e} and with e oriented from u to v.

For any b’ € Z(G’, A), define a function b by

(z) if ze V(G") — {w} = V(G) — {u,v}
b(z) =

(w) ifz=u
if z=v.

b/
b/
0
Then ..y b(2) =3 . V(G, b'(z) =0, and so beZ(G A). Since G e<A4),
there is a functlon feF*(G,A) with 0f = b. Let f' be the restriction of f to
E(G) — {e}. Since

of'(w) = fle) - > ACY

e’ € EG(v)UES(u)—{e} e'e Eg(v)UEg(u)—{e}

= /() + 0/ (v) = bu) + b(v) = b'(w),

of" = b" and so by definition, G/e € {A). Therefore (C2) holds.

Suppose that both H € {A) and G/H € {(4). We may assume that G has a
fixed orientation. Thus the edges in both H and G/H are oriented by the orienta-
tion of G. By Lemma 3.1(iii), we may assume that H is an induced subgraph of G,
and so E(G) is the disjoint union of E(H) and E(G/H). Note that H is connected
and so H will be contracted to a vertex vy (say) in G/H. Let b € Z(G, A) and let
ag =Y ye ) b(v). Define by : V(G/H) — A by

b(z) if z #vy
bl(z):{() if z #

ao if z =vy.

Then >y ) 01(2) = X.c () b(2) and so by € Z(G/H, A). Since G/H € {4},
there is a function f; € F*(G/H, A) such that df; = b;.
For each z € V(H), define

_{ ( )+Z(’EE (vm) NEG( fl( ) ZBEE .fl( ) leGAG(H)

G/H G/H (vm)

b(z) otherwise.
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Note that
Z bhiz)= > b+ > filo— Y. file)=ao—afi(va) =0,
zeV(H zeV(H) eeEr/H(LH) ee EG/H(LH)

and so b, € Z(H, A). Since H € {A), there is a function f, € F*(H, A) such that
0fy = by.

Define, for each ee E(G), f(e) = fi(e) + fr(e). Since E(G) is the disjoint
union of E(H) and E(G/H), f € F*(G, A); and for a vertex z € V(G),

0f(2) = 0fi(2) + 0f2(2) = 0/1(2) + b(2) = 0f1(2) = b(2).
Therefore G € (A, and so (C3) follows. O

The “only if” part of Lemma 3.3 was observed in [7] without a proof. We
present the whole proof of Lemma 3.3 for the sake of completeness.

Lemma 3.3. Let n > 1 denote an integer and let C, denote the cycle of n vertices.
Then for any Abelian group A, C, € {A) if and only if |A| = n+ 1.

Proof. Let C, = vjv; - - - v,v; and assume that the edge v;v;,; is oriented from v; to
vir1, foreach i=1,2,...,n (modn).

Suppose first that C, € {(4). We shall assume |4| = m < n to find a contra-
diction.

Let A ={a,d5,...,a

,a, } with a/, = 0. Let ap = 0, alfal and a; = a] —a]_,

for2<i<m-—1anda,=— Zml a;. Then a1, ay, ... ,a,_1 is a sequence of ele-
ments in 4 such that {Z l<ism-1} = A —{0}. Moreover, for any
xe A,

{x—l—i:aj:lSiSm—l}:A. (1)

Jj=0

Define b(v;) = a; for 1 <i <m, and b(v;) =0 for m+ 1 < i < n. Since |4| = m,
S b)) =" a4+ am=0€ A4 and so be Z(C,, 4). Since C, € (A, there
is a function f e F*(C,,A) such that 0f =b. Denote f(v,v;) by x. Then
since 0f = b, we must have f(vivir1) =x+);  a for all i=1,2,...,m and
f(wi) =xforall i=m+1,...,n. By (1), one of f(vivig1), where 1 <i<n,
must be 0 € 4, contrary to the assurnption that f € F*(C,, A).

Conversely, assume that [4] >n+ 1. Let be Z(Cy, A), and let B={ae
A:a=—b(v;) forsome 1 <i<n—1}. Then |B|<n—1. Since |[4|=n+1,
there is an xe 4 — (BU{0}). Define feF(G,A) by f(vvir1)=>b(v))+x
(1<i<n-1)and f(v,v1) =x. Then 0f(v;) = b(v;) and f € F*(C,, A). Hence
C, e {4). O

Let kK > 1 be an integer and let H be a subgraph of G. The k-closure of H in G
is the (unique) maximal subgraph of G the form HU I, U --- U I, where for each
ibl<i<n Tisacycleand |[E(I';)— E(HUTI''U---UT;)| <k.

Corollary 3.4 below follows from Lemma 3.3 and Proposition 3.2(C3).
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Corollary 3.4 (Corollary 2.4 of [7]). Let A be a finite Abelian group with |A| > k.
Let H be a subgraph of G. If H € {A), then the k-closure of H in G is also in {A).
Corollary 3.5 below follows from Proposition 3.2(C3) and Lemma 3.3.

Corollary 3.5. Let A be an Abelian group with |A| = 3, let n > 5 be an integer, and
let K, — e denote the graph obtained from K, by removing an edge from K,. Each of
the following holds:

(i) K,—eelA4), and
(i) K, e {4).

Proposition 3.6. Let W, be the wheel of n+ 1 vertices. Then Wy € {A), for any
Abelian group A with |A| > 3.

Proof. Let vjvv304v) be the rim 4-cycle of Wy and let v denote the center vertex of
Wy. 1f |A| = 4, then by Lemma 3.3 and Proposition 3.2, W, € <{4). Hence we only
need to prove the case when 4 = Z3. Express Z3 = {0,1,—1}.

Let be Z(Wy,Z3). We shall find fe F*(Wy,Z;) by defining f(e) =1,
Ve € E(W}3) and adjust the orientation of Wy to meet the requirement of 0/ = b.
In the rest of the proof, for an edge e = xy € E(W}), we write (x, y) to mean that
e is oriented from x to y. An orientation D of W, will be expressed by a set of
oriented edges.

If b(v) =0, then let M = {{vj,v2},{v3,v4}> be a partition of N(v). Then
(W4)<U? M) is the 3-regular graph with a 4-cycle and two disjoint 2-cycles. By
Lemma 3.3 and by Proposition 3.2(C3), (W4)(U,M> € {Z3», and so by Lemma
3.1(ii), there is a function f € F*(W4, Z3) such that 0/ = b. Hence we assume that
b(v) #0€ Zs, and so b(v) e {1,—1}. We only need to show that case when
b(v) = 1, by symmetry.

Since }°. .y, b(z) = 0, we may assume that b(vi) # 0 € Zs.

Suppose first that b(v;) = —1. Since b e Z(Wy, Z3), either b(vy) = b(v3) =
b(v4) = 1, whence

Dl = {(Ua U]), (UZ7 U), (037 U)7 (047 U), (UlaUZ)y (U27 03)7 (037 U4); (U4; Ul)}
is an orientation satisfying 0 f = b; or b(v2) = b(v3) = b(v4) = 0, whence
Dy = {(v1,0), (v2,0), (v,v3), (va, ), (v2,01), (v2,03), (va, v3), (v, 01) }

is an orientation satisfying 0 f = b.

Hence we assume that b(v;) = 1, and by symmetry, we assume that b(v;) #
—1,Viwith 2 <i < 4. Since b € Z(W4, Z3) and by symmetry, either b(v2) = 1 and
b(v3) = b(vs) = 0, whence

D3 = {(0150)7 <1727 U), (U7 03)7 (1747 U), (U17 U2)a (U27 03)7 (U47 03)1 (U4a Ul)}
is an orientation satisfying 0f = b; or b(v3) = 1 and b(vy) = b(v4) = 0, whence
Dy = {(UI,U), (1727 U)a (U3a U)7 (U, U4)a (027 Ul)a (UZa U3)a (U3a U4)a (U1,1)4)}

is an orientation satisfying 0 f = b.
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In any case, such a function /' € F*(Wy, Z3) can be found so that 0/ = b, and
so Wy € (Z3), by definition. O

4. Group Connectivity of Chordal Graphs

We shall prove the following Theorem 4.2, which implies that every 4-edge-
connected chordal graph has a Z3-NZF. A graph G is chordal if every induced
cycle of G has length at most 3. Lemma 4.1 is an easy observation.

Lemma 4.1. Every 2-connected simple graph H with |V (H)| = 4 has a cycle of
length at least 4.

Theorem 4.2. Let A be an Abelian group of order at least 3. If G is a 4-edge-
connected chordal graph, then G € {A).

Before proving Theorem 4.2, we present some examples to show that both con-
ditions of G in Theorem 4.2 are needed.

Example 4.3. We shall show that being 4-edge-connected cannot be relaxed in
Theorem 4.2, in the sense that there are infinitely many 3-edge-connected chordal
graphs that are not in {Z3). The graph Kj is a 3-edge-connected chordal graph
that does not have a Z3-NZF, and so it cannot be Z3-connected. By Proposition
3.2(C2), any graph contractible to K4 cannot be Zs-connected. In particular, any
graph with a block (a maximal 2-connected subgraph) isomorphic to K4 cannot be
Z3-connected.

In fact, there is a class of 3-edge-connected, 2-connected chordal graphs that
are not Zs-connected. We shall present this class. Let m > 1 be an integer and let
Gy, Gy, ..., Gy, be m disjoint copies of K4 each of which has a distinguished edge
e, =x;y;, (1 <i<m). Let G(m) denote the graph obtained from the disjoint
union of Gy —ey, Gy —e3,...,Gy 1 —en_1 and G, by identifying x1,x2,..., X,
into a single vertex x and by identifying y,, y,,..., »,, into a single vertex y. The
edge e,,, with its ends being x and y, is now an edge in G(m). We shall show that
G(m) does not have a Z3-NZF, and therefore cannot be Z3-connected.

Suppose that G(m) has a Z3-NZF. Thus G(m) is oriented and there is a func-
tion f € F*(G(m), Z3) such that df = 0. Expressing Z3 = {0, 1, —1} and reversing
the direction of the edges in G(m) if necessary, we may assume that f(e) =1,
Ve € E(G(m)). For each i with 1 < i < m, denote V(G;) = {x;, y;, u;, v;}, where u;
and v; are the two vertices of this subgraph G; with degree 3 in G(m). Since
f(e) =1,Yee E(G(m)), we may assume that all three edges incident with u;
are directed out from u;, and so all three edges incident with v; are directed into v;,
for each i with 1 < i < m. It follows by ¢/ = 0 that f(e,) =0, contrary to the
assumption that f € F*(G(m), Z3). O

Example 4.4. Being chordal cannot be relaxed in Theorem 4.2 either, in the sense
that there are 4-edge-connected non-chordal graphs that are not Zs-connected.
The following class of graphs (together with its proof) is based on an example
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given by Jaeger ef a/ in [7]. Let m > 1 be an integer and let C; and C, be two
disjoint cycles of 6m vertices. Denote

Cr =uuy---ugpuy  and  Cy = v1v2 - - - Vg1

Obtain a graph J(m) from the disjoint union of C; and C, by adding these new
edges: U;:l{uzj,lvzj,l,uzjvzj,uzj,lvzj,ugjvzj,l}. Note that J(m) has 3m disjoint

K4’s and every independent set of J(m) has at most one vertex in each of these 3m
Ky’s. Thus every independent set in J(m) has at most 3m vertices. Note also that
|V (J(m))| = 12m and |E(J(m))| = 24m. It is easy to see that J(m) is 4-regular and
4-connected.

We argue by contradiction to show that J(m) is not Z3-connected. Let b = 1 be
a constant function defined on V' (J(m)). Since |V (J(m))| = 12m, b € Z(J(m), Z3).
Assume that there is a function f € F*(J(m),Z3) such that 0f = b. Expressing
Z3 =4{0,1,—1} and reversing the direction of edges in J(m) if necessary, we may
assume that f(e) = 1,Ve € E(J(m)). Since J(m) is 4-regular, each vertex in J(m)
has either out degree 1 or 4. Let V; denote the number of vertices of out degree i
in J(m), where i€ {1,4}. Then V| + V4= |V(J(m))| = 12m and 4V4+ V| =
|E(J(m))| = 24m. Tt follows that V|, = 8m and V4 = 4m. However, since every
independent set in J(m) has at most 3m vertices, there must be two vertices in V4
that are adjacent in J(m), which is impossible since J(m) is 4-regular. O

Theorem 4.2 will follow from the following stronger Theorem 4.7, which
shows that the graphs presented in Example 4.3 are basically the only exceptional
graphs for a 3-edge-connected chordal graph to be A-connected, for any Abelian
group A with |4| > 3. We need two more easy observations.

Lemma 4.5. If G is simple, 2-connected, 3-regular and chordal, then G is isomorphic
to a Ky.

Proof. Pick ve V(G) and denote N(v) = {v, v, v3}. Since G is 2-connected and
simple, the two edges vv; and vv, must be in a shortest cycle C of G of length at
least 3. Since G is chordal, C must have length exactly 3, and so vjv; € E(G).
Similarly, we may assume vjv3, 0203 € E(G). Since G is 3-regular and connected,
V(G) = {v,v,v,03}, and so G is isomorphic to a Kj. O

Let K4 be a given complete graph on 4 vertices {u, v, x, y} with a distinguished
edge a = xy, and let G be a graph disjoint from this K4 with |E(G)| > 2 and with a
distinguished edge ¢’ = x’y’. Define a new graph G @ K; to be the graph obtained
from the disjoint union of G — ¢’ and K; by identifying x’ and x to form a
new vertex, also called x, and by identifying ' and y to form a new vertex, also
called y. Note that the edge a = xy is now an edge of G ® K4 and that G =
G ® Ky — {u,v}.

Lemma 4.6. G @ K4 € {Z3) if and only if G € {Z3).

Proof. Let G' = G @ K4. We shall use the notation in the definition of G @ K4 and
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assume that V(G') = V(G) U {u,v} and V(K4) = {u,v,x, y}. In the proof below,
K, denotes the given complete graph on 4 vertices in the definition of G @ Kj.

Assume that G € (Z3). Let X = {xu,xv}. Then G[’x X has y as a cut vertex.
Note that the graph G[/x. X] /G is spanned by a 3-cycle with one edge of this 3-cycle
in a 2-cycle. By Proposition 3.2(C3) and by Lemma 3.3 (with n=2),
Gy, X]f/G € {(Z3). By Proposition 3.2(C3) and by the assumption that G € (Z3),
G[lx,X] € {Z3y. By Lemma 3.1(i) and by G[/x.,X] e {Z3>, G' e {Z3>.

Conversely, assume that G’ € {Z3). Let b € Z(G, Z3). We shall show that there
is a function f € F*(G, Z3) such that 0f = b. Define b’ : V(G') — Z3 by

b — b(z) if ze V(G — {u,v}
(Z)_{O if z e {u,v}.

Since V(G') = V(G)U{u,v} and since b'(u) =b'(v) =0, b’ € Z(G',Z3). Since
G' € Z3, there is a function f' e F*(G',Z3) such that of' =b'. Expressing
Z3=4{0,1,—1} and reversing the direction on E(K4), we may assume that
f'(e) = 1,Ve € E(Ky). Since u and v has degree 3 in G’, we may assume that the
three edges incident with u are all oriented away from u, and so the three edges
incident with v are oriented into v. Let f be the restriction of /' on E(G). Then it is
easy to see that 0f = b. Since ' € F*(G'.Z3), f € F*(G,Z;3). 1t follows by defi-
nition that G € {Z3). O

Remark. Lemma 4.6 provides an alternative proof for the fact that the graphs
G(m) in Example 4.3 are not Zs-connected.

Theorem 4.7. Let G be a 3-edge-connected chordal graph. Then one of the following
holds:

(i) G is A-connected, for any Abelian group A with |A| > 3; or
(i) G has a block isomorphic to a Ku; or
(i) G has a subgraph Gy such that G| ¢ {Z3) and such that G = G| @ Kj.

Proof. Let A be an Abelian group with |4]| > 3 and let G be a counterexample
such that G ¢ {4) and |E(G)| minimized.

Suppose first that G has a nontrivial subgraph H (a subgraph with at least one
edge) such that H € (4). Then by the definition of contraction, G/H, the graph
obtained from G by contracting all edges in H, is also 3-edge-connected and
chordal. Since |E(H)| > 1 and since |E(G/H)| = |E(G)| — |E(H)|, by the mini-
mality of |E(G)|, G/H € {A) By Proposition 3.2(C3), G € {4), a contradiction.
Therefore, G does not have any nontrivial subgraph H such that H € (4.

Since G is chordal, G must have a 3-cycle. By Lemma 3.3, if |A4| > 4, then 3-
cycles are in (4. Since G must not have a nontrivial subgraph in {4, it must be
the case that 4 = Z5.

By Lemma 3.3 and since G must not have nontrivial subgraph in {(Z3), we
may assume that G has no loops and 2-cycles. Therefore by the minimality of G
and by Proposition 3.6, we assume that G does not satisfy any of (i)—(iii) of The-
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orem 4.7, that G is simple, 2-connected and chordal, and that
G does not contain a W, as a subgraph. (2)

Let v € V(G) be an arbitrary vertex and let N(v) = {v1,v,...,vs}. Since G is
simple, m = d(v) > 3. Define N(v) = N(v) U {v} and let

G, = G[N(v)] and G, = G[N(v)]
be induced subgraphs of G. We first prove the following claims.

Claim 1. G, is connected.

Suppose that G, has more than one components. Since G is 2-connected, there
is a shortest cycle C that contains v, one vertex in one component of G, and a
vertex in another component of G,. Since G is a simple chordal graph and since C
is a shortest cycle, |[E(C)| = 3 and so there is an edge in G joining the two com-
ponents of G,. Since G, is an induced subgraph, this edge should have been in G,
a contradiction. This proves Claim 1.

Claim 2. Either G, is not 2-connected, or both d(v) = 3 and G, is isomorphic to a
Ky.

Suppose that G, is 2-connected. If d(v) > 4, then by Lemma 4.1, G, must have
a cycle of length at least 4. Since G is chordal, G, must have a cycle of length 4.
Therefore, G(v) has a W;, contrary to (2). Hence we assume that d(v) = 3. Then
G, is a 2-connected graph with 3 vertices. Hence G, is isomorphic to a Ky4. This
proves Claim 2.

Claim 3. Every vertex v € V(G) such that G, is connected but not 2-connected must
be in a vertex cut of cardinality 2 in G.

Assume that v € V(G) is a vertex such that G, is not 2-connected and such
that v is not in a vertex cut of cardinality 2. Let N(v) = {v1,v2,...,0,} with
m = d(v) > 3. Since G, is connected but not 2-connected, G, has a cut vertex vy,
(say). It follows that there are nontrivial and connected subgraphs L;, L, of G,
such that G, = L; U L, and such that V(L;) N V(L;) = {v,}. We may assume that
vy 1s adjacent to v, in Ly and v, is adjacent to v,, in L.

Since {v,v,} is not a vertex cut of G, G — {v,v,} has a (vj,v;)-path. Let P
denote a shortest (v;, vj)-path in G — {v,v,,} such that v; € V(L) and v; € V(L,).
Then since G is chordal, P must be a path of length one, and so vv; € E(G). It
follows that v,, is not a cut vertex of G,, a contradiction. This proves Claim 3.

If G is cubic, then Theorem 4.7(ii) follows from Lemma 4.5, contrary to the
assumption that G is a counterexample. Hence we may assume 4(G) > 4.

A subgraph H of G is called a 2-block if H is 2-connected and if |Ag(H)| = 2.
A 2-block H of G is minimal if H is a 2-block and if H does not properly contain
another 2-block of G. By Claim 1, Claim 2 and by the assumption that 4(G) > 4,
G must have a vertex v € V(G) such that G, is connected but not 2-connected. By
Claim 3, G has a minimal 2-block H.

Since H is 2-connected and simple, |V (H)| > 3. Since |Ag(H)| =2, V(H) —
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Ag(H) # &. Since H is a minimal 2-block, every vertex in V(H) — Ag(H) cannot
be in a vertex cut of cardinality 2. By Claim 1 and Claim 3, G, is 2-connected,
Yoe V(H) — Ag(H). By Claim 2, Yoe V(H) — Ag(H), d(v) =3 and G, is iso-
morphic to a Ky. Thus if |V(H)| > 5, then one vertex in G, will be a cut-vertex of
G, contrary to the assumption that G is 2-connected. Hence |V (H)| =4 and so H
is isomorphic to a K. By Lemma 4.6, Theorem 4.7(iii) follows, contrary to the
assumption that G is a counterexample.

This contradiction establishes the theorem. O

Note that Ky ¢ <Z3). By Proposition 3.2(C2) and by Lemma 4.5, graphs with
a structure described in (ii) or (iii) of Theorem 4.7 cannot be in (Z3). Thus
Theorem 4.7 can also be stated as the following characterization.

Corollary 4.8. Let G be a 3-edge-connected chordal graph. The G is A-connected for
every Abelian group A with |A| > 3 if and only if G does not have the structure
described in Theorem 4.7(i1) and (iii).

Proof of Theorem 4.2. When G is 4-edge-connected, neither Theorem 4.7(ii) nor
Theorem 4.7(iii) will occur, and so by Corollary 4.8, G € {A4),YA with |[4]| = 3. O
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