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Abstract. Let A be a ®nite abelian group and G be a digraph. The boundary of a func-
tion f : E�G� 7! A is a function q f : V�G� 7! A given by q f �v� �Pe leaving v f �e�ÿP

e entering v f �e�. The graph G is A-connected if for every b : V�G� 7! A withP
v AV�G� b�v� � 0, there is a function f : E�G� 7! Aÿ f0g such that q f � b. In [J. Combi-

natorial Theory, Ser. B 56 (1992) 165±182], Jaeger et al showed that every 3-edge-
connected graph is A-connected, for every abelian group A with jAjV 6. It is con-
jectured that every 3-edge-connected graph is A-connected, for every abelian group A
with jAjV 5; and that every 5-edge-connected graph is A-connected, for every abelian
group A with jAjV 3.

In this note, we investigate the group connectivity of 3-edge-connected chordal graphs
and characterize 3-edge-connected chordal graphs that are A-connected for every ®nite
abelian group A with jAjV 3.

1. Introduction

We consider ®nite graphs which may contain loops or multiple edges. The groups
considered in this paper are ®nite Abelian (additive) groups. For a ®nite Abelian
group A, the additive identity of A will be denoted by 0 (zero) throughout this
paper. Let G and H be graphs. If H is a subgraph of G, then we write H JG.

Let G be a digraph. For a vertex v A V�G�, let

EÿG �v� � f�u; v� A E�G� : u A V�G�g; and E�G �v� � f�v; u� A E�G� : u A V�G�g:

The subscript G may be omitted when G is understood from the context.
Let A be a nontrivial Abelian group and let A� denote the set of nonzero ele-

ments in A. De®ne

F�G;A� � f f : E�G� ! Ag and F ��G;A� � f f : E�G� ! A�g:
For each f A F �G;A�, the boundary of f is a function q f : V�G� ! A de®ned by

q f �v� �
X

e AE��v�
f �e� ÿ

X
e AEÿ�v�

f �e�;

where ``
P

'' refers to the addition in A. Throughout this paper, we shall adopt the



following convenience: if X JE�G� and if f : X ! A is a function, then we re-
gard f as a function f : E�G� ! A such that f �e� � 0 for all e A E�G� ÿ X .

Let G be an undirected graph and A be an abelian group. A function
b : V�G� ! A is called an A-valued zero sum function on G if

P
v AV�G� b�v� � 0 in

G. The set of all A-valued zero sum functions on G is denoted by Z�G;A�. A graph
G is A-connected if G has an orientation G 0 such that for every function
b A Z�G;A�, there is a function f A F ��G 0;A� such that b � q f . For an Abelian
group A, let hAi denote the family of graphs that are A-connected. It is observed
in [7] that that G A hAi is independent of the orientation of G.

An A-nowhere-zero-¯ow (abbreviated as A-NZF) in G is a function
f A F ��G;A� such that q f � 0. The nowhere-zero-¯ow problems were introduced
by Tutte [14], and recently surveyed by Jaeger in [6].

The concept of A-connectivity was introduced by Jaeger et al in [7], where A-
NZF's were successfully generalized to A-connectivities. A concept similar to the
group connectivity was independently introduced in [8], with a di¨erent motiva-
tion from [7].

Tutte's 3-¯ow conjecture ([2], Unsolved Problem 48) states that every 4-edge-
connected graph has a Z3-NZF. It is known that planar graphs and projective
planar graphs are two graph families in which Tutte's 3-¯ow conjecture holds ([12]
and [16]). In this note, we shall show (in Section 4) that every 4-edge-connected
chordal graph is A-connected, for each Abelian group A with jAjV 3. In particular,
every 4-edge-connected chordal graph admits a Z3-NZF. There are examples, pre-
sented in Section 4, showing that both being chordal and being 4-edge-connected
cannot be relaxed in this result. We also investigate 3-edge-connected chordal
graphs in Section 4 and characterize those 3-edge-connected chordal graphs
which are not Z3-connected.

In Section 2, former related results are presented and in Section 3, some prop-
erties on group connectivity will be developed. These properties will be used in
Section 4 to prove the main results.

2. Prior Results

We present some prior results on Z3-NZF's in this section.

Theorem 2.1 (GroÈtzsch [4]). Every 4-edge-connected planar graph has a Z3-NZF.

Theorem 2.2 (Tutte [15]). Let G be a 3-regular graph. Then G has a Z3-NZF if and

only if G is bipartite.

Theorem 2.3 (GruÈbaum [5], Aksionov [1], Steinberg and Younger [11] and

Thomassen [13]). Every 2-edge-connected graph with at most three edge cuts of size 3
and embedable in the plane has a Z3-NZF.

Theorem 2.4 (Steinberg and Younger [11]). Every 2-edge-connected graph with at

most one edge cut of size 3 and embedable in the projective plane has a Z3-NZF.
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Theorem 2.5 (Lai and Zhang [10]). Let G be a k-edge-connected graph with t odd

vertices. If k V 4dlog2te, then G has a Z3-NZF.
It is conjectured in [7] that every 5-edge-connected graphs is in hZ3i.

3. Some Properties

We need the notion of graph contraction. Let G be a graph and let X JE�G� be
an edge subset. The contraction G=X is the graph obtained from G by identifying
the two ends of each edge e in X and deleting e. If X � feg, then we write G=e for
G=feg. If H is a subgraph of G, then we write G=H for G=E�H�. Note that even G

is a simple graph, the contraction G=X may have loops and multiple edges.
Let G be a graph and let v A V�G� be a vertex of degree mV 4. Let

N�v� � fv1; v2; . . . ; vmg denote the set of vertices adjacent to the vertex v, and let
X � fvv1; vv2g. The graph G�v;X � is obtained from G ÿ fvv1; vv2g by adding a new
edge that joins v1 and v2. If m � 2k is even and if

M � hfv1; vk�1g; fv2; vk�2g; . . . ; fvk; v2kgi
is a way to pair the vertices in N�v�, then G�v;M� denotes the graph obtained from
G ÿ v by adding k new edges ei joining vi and vk�i; �1U i U k�.

Lemma 3.1. Let A be an Abelian group. Let G be a graph and let v A V�G� be a

vertex of degree mV 4.

(i) If for some X of two edges incident with v in G, G�v;X � A hAi, then G A hAi.
(ii) Let m be even, let M be a way to pair the vertices of N�v� such that

G�v;M� A hAi, and let b A Z�G;A� be given. If b�v� � 0 A A, then there is a function

f A F ��G;A� such that q f � b.
(iii) (Corollary 2.3, [7]) Let e � v1v2 be an edge in G. If G ÿ e A hAi, then

G A hAi.

Proof. (i). We may assume that N�v� � fv1; . . . ; vmg and X � fvv1; vv2g. Since
being A-connected is a property independent of the orientation, we may assume
that in G, the two edges in X are oriented from v1 to v, and from v to v2; and we
may assume that in G�v;X �, the newly added edge (denoted by v1v2) is oriented from
v1 to v2.

Let b A Z�G;A�. Since V�G� � V�G�v;X ��, b A Z�G�v;X �;A� also. Since
G�v;X � A hAi, there is a function f 0 A F ��G�v;X �;A� such that q f 0 � b. De®ne
f A F�G;A� by f �e� � f 0�e� if e A E�G� ÿ X , and f �v1v� � f �vv2� � f 0�v1v2�.
Then it is easy to see that f A F ��G;A� such that q f � b. This proves (i).

(ii). The proof for (ii) is similar to that for (i), and so is omitted. r

For a subgraph H of a graph G, let AG�H� denote the vertices in V�H� that are
adjacent to some vertices in V�G� ÿ V�H� in G. (Vertices in AG�H� are called the
vertices of attachment of H in G.)

Proposition 3.2. For any Abelian group A, hAi is a family of connected graphs

Group Connectivity of 3-Edge-Connected Chordal Graphs 167



satisfying each of the following holds:

(C1) K1 A hAi,
(C2) if e A E�G� and if G A hAi, then G=e A hAi, and

(C3) if H A hAi and if G=H A hAi, then G A hAi.

(A family of connected graphs satisfying (C1)±(C3) is called a complete family, ®rst

introduced by Catlin [3]. In fact, Catlin de®ned and studied complete families in a

more general way. For more properties of complete families, see [3].)

Proof. Let A be an Abelian group. By Proposition 2.1 of [7], every member in hAi
is connected. Note that (C1) follows from the de®nition of hAi trivially.

Let e A E�G� and assume that G A hAi. Let G 0 be G=e with an orientation, let
the two ends of e be u and v and let w denote the vertex in G 0 to which u and v are
identi®ed. Let G also denote the digraph with the same orientation as G 0 on the
edges in E�G� ÿ feg and with e oriented from u to v.

For any b 0 A Z�G 0;A�, de®ne a function b by

b�z� �
b 0�z� if z A V�G 0� ÿ fwg � V�G� ÿ fu; vg
b 0�w� if z � u

0 if z � v.

8><>:
Then

P
z AV�G� b�z� �

P
z AV�G 0� b

0�z� � 0, and so b A Z�G;A�. Since G A hAi,
there is a function f A F ��G;A� with q f � b. Let f 0 be the restriction of f to
E�G� ÿ feg. Since

q f 0�w� �
X

e 0 A E�
G
�v�UE�

G
�u�ÿfeg

f �e 0� ÿ
X

e 0 A Eÿ
G
�v�UEÿ

G
�u�ÿfeg

f �e 0�

� q f �u� � q f �v� � b�u� � b�v� � b 0�w�;
q f 0 � b 0 and so by de®nition, G=e A hAi. Therefore (C2) holds.

Suppose that both H A hAi and G=H A hAi. We may assume that G has a
®xed orientation. Thus the edges in both H and G=H are oriented by the orienta-
tion of G. By Lemma 3.1(iii), we may assume that H is an induced subgraph of G,
and so E�G� is the disjoint union of E�H� and E�G=H�. Note that H is connected
and so H will be contracted to a vertex vH (say) in G=H. Let b A Z�G;A� and let
a0 �

P
v AV�H� b�v�. De®ne b1 : V�G=H� ! A by

b1�z� �
b�z� if z0 vH

a0 if z � vH .

(

Then
P

z AV�G=H� b1�z� �
P

z AV�G� b�z� and so b1 A Z�G=H;A�. Since G=H A hAi,
there is a function f1 A F ��G=H;A� such that q f1 � b1.

For each z A V�H�, de®ne

b2�z� �
b�z� �Pe AEÿ

G=H
�vH �VEÿ

G
�z� f1�e� ÿ

P
e AE�

G=H
�vH �VE�

G
�z� f1�e� if z A AG�H�

b�z� otherwise.

(
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Note thatX
z AV�H�

b2�z� �
X

z AV�H�
b�z� �

X
e AEÿ

G=H
�vH �

f1�e� ÿ
X

e AE�
G=H
�vH �

f1�e� � a0 ÿ q f1�vH� � 0;

and so b2 A Z�H;A�. Since H A hAi, there is a function f2 A F ��H;A� such that
q f2 � b2.

De®ne, for each e A E�G�, f �e� � f1�e� � f2�e�. Since E�G� is the disjoint
union of E�H� and E�G=H�, f A F ��G;A�; and for a vertex z A V�G�,

q f �z� � q f1�z� � q f2�z� � q f1�z� � b�z� ÿ q f1�z� � b�z�:
Therefore G A hAi, and so (C3) follows. r

The ``only if '' part of Lemma 3.3 was observed in [7] without a proof. We
present the whole proof of Lemma 3.3 for the sake of completeness.

Lemma 3.3. Let nV 1 denote an integer and let Cn denote the cycle of n vertices.
Then for any Abelian group A, Cn A hAi if and only if jAjV n� 1.

Proof. Let Cn � v1v2 � � � vnv1 and assume that the edge vivi�1 is oriented from vi to
vi�1, for each i � 1; 2; . . . ; n �mod n�.

Suppose ®rst that Cn A hAi. We shall assume jAj � mU n to ®nd a contra-
diction.

Let A � fa 01; a 02; . . . ; a 0mg with a 0m � 0. Let a0 � 0, a1 � a 01 and ai � a 0i ÿ a 0iÿ1

for 2U iUmÿ 1 and am � ÿ
Pmÿ1

i�1 ai. Then a1; a2; . . . ; amÿ1 is a sequence of ele-
ments in A such that fP i

j�1 aj : 1U i Umÿ 1g � Aÿ f0g. Moreover, for any
x A A,

x�
Xi

j�0

aj : 1U i Umÿ 1

( )
� A: �1�

De®ne b�vi� � ai for 1U i Um, and b�vi� � 0 for m� 1U iU n. Since jAj � m,Pn
i�1 b�vi� �

Pmÿ1
i�1 ai � am � 0 A A and so b A Z�Cn;A�. Since Cn A hAi, there

is a function f A F ��Cn;A� such that q f � b. Denote f �vnv1� by x. Then
since q f � b, we must have f �vivi�1� � x�P i

j�1 ai for all i � 1; 2; . . . ;m and
f �vivi�1� � x for all i � m� 1; . . . ; n. By (1), one of f �vivi�1�, where 1U iU n,
must be 0 A A, contrary to the assumption that f A F ��Cn;A�.

Conversely, assume that jAjV n� 1. Let b A Z�Cn;A�, and let B � fa A
A : a � ÿb�vi� for some 1U i U nÿ 1g. Then jBjU nÿ 1. Since jAjV n� 1,
there is an x A Aÿ �BU f0g�. De®ne f A F�G;A� by f �vivi�1� � b�vi� � x

(1U iU nÿ 1� and f �vnv1� � x. Then q f �vi� � b�vi� and f A F ��Cn;A�. Hence
Cn A hAi. r

Let k V 1 be an integer and let H be a subgraph of G. The k-closure of H in G
is the (unique) maximal subgraph of G the form H UG1 U � � � UGn where for each
i, 1U iU n, G i is a cycle and jE�G i� ÿ E�H UG1 U � � � UG iÿ1�jU k.

Corollary 3.4 below follows from Lemma 3.3 and Proposition 3.2(C3).
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Corollary 3.4 (Corollary 2.4 of [7]). Let A be a ®nite Abelian group with jAj > k.
Let H be a subgraph of G. If H A hAi, then the k-closure of H in G is also in hAi.

Corollary 3.5 below follows from Proposition 3.2(C3) and Lemma 3.3.

Corollary 3.5. Let A be an Abelian group with jAjV 3, let nV 5 be an integer, and

let Kn ÿ e denote the graph obtained from Kn by removing an edge from Kn. Each of

the following holds:

(i) Kn ÿ e A hAi, and

(ii) Kn A hAi.

Proposition 3.6. Let Wn be the wheel of n� 1 vertices. Then W4 A hAi, for any

Abelian group A with jAjV 3.

Proof. Let v1v2v3v4v1 be the rim 4-cycle of W4 and let v denote the center vertex of
W4. If jAjV 4, then by Lemma 3.3 and Proposition 3.2, W4 A hAi. Hence we only
need to prove the case when A � Z3. Express Z3 � f0; 1;ÿ1g.

Let b A Z�W4;Z3�. We shall ®nd f A F ��W4;Z3� by de®ning f �e� � 1;
Ee A E�W4� and adjust the orientation of W4 to meet the requirement of q f � b.
In the rest of the proof, for an edge e � xy A E�W4�, we write �x; y� to mean that
e is oriented from x to y. An orientation D of W4 will be expressed by a set of
oriented edges.

If b�v� � 0, then let M � hfv1; v2g; fv3; v4gi be a partition of N�v�. Then
�W4��v;M� is the 3-regular graph with a 4-cycle and two disjoint 2-cycles. By

Lemma 3.3 and by Proposition 3.2(C3), �W4��v;M� A hZ3i, and so by Lemma
3.1(ii), there is a function f A F ��W4;Z3� such that q f � b. Hence we assume that
b�v�0 0 A Z3, and so b�v� A f1;ÿ1g. We only need to show that case when
b�v� � 1, by symmetry.

Since
P

z AV�W4� b�z� � 0, we may assume that b�v1�0 0 A Z3.
Suppose ®rst that b�v1� � ÿ1. Since b A Z�W4;Z3�, either b�v2� � b�v3� �

b�v4� � 1, whence

D1 � f�v; v1�; �v2; v�; �v3; v�; �v4; v�; �v1; v2�; �v2; v3�; �v3; v4�; �v4; v1�g
is an orientation satisfying q f � b; or b�v2� � b�v3� � b�v4� � 0, whence

D2 � f�v1; v�; �v2; v�; �v; v3�; �v4; v�; �v2; v1�; �v2; v3�; �v4; v3�; �v4; v1�g
is an orientation satisfying q f � b.

Hence we assume that b�v1� � 1, and by symmetry, we assume that b�vi�0
ÿ1; Ei with 2U iU 4. Since b A Z�W4;Z3� and by symmetry, either b�v2� � 1 and
b�v3� � b�v4� � 0, whence

D3 � f�v1; v�; �v2; v�; �v; v3�; �v4; v�; �v1; v2�; �v2; v3�; �v4; v3�; �v4; v1�g
is an orientation satisfying q f � b; or b�v3� � 1 and b�v2� � b�v4� � 0, whence

D4 � f�v1; v�; �v2; v�; �v3; v�; �v; v4�; �v2; v1�; �v2; v3�; �v3; v4�; �v1; v4�g
is an orientation satisfying q f � b.
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In any case, such a function f A F ��W4;Z3� can be found so that q f � b, and
so W4 A hZ3i, by de®nition. r

4. Group Connectivity of Chordal Graphs

We shall prove the following Theorem 4.2, which implies that every 4-edge-
connected chordal graph has a Z3-NZF. A graph G is chordal if every induced
cycle of G has length at most 3. Lemma 4.1 is an easy observation.

Lemma 4.1. Every 2-connected simple graph H with jV�H�jV 4 has a cycle of

length at least 4.

Theorem 4.2. Let A be an Abelian group of order at least 3. If G is a 4-edge-

connected chordal graph, then G A hAi.
Before proving Theorem 4.2, we present some examples to show that both con-

ditions of G in Theorem 4.2 are needed.

Example 4.3. We shall show that being 4-edge-connected cannot be relaxed in
Theorem 4.2, in the sense that there are in®nitely many 3-edge-connected chordal
graphs that are not in hZ3i. The graph K4 is a 3-edge-connected chordal graph
that does not have a Z3-NZF, and so it cannot be Z3-connected. By Proposition
3.2(C2), any graph contractible to K4 cannot be Z3-connected. In particular, any
graph with a block (a maximal 2-connected subgraph) isomorphic to K4 cannot be
Z3-connected.

In fact, there is a class of 3-edge-connected, 2-connected chordal graphs that
are not Z3-connected. We shall present this class. Let mV 1 be an integer and let
G1;G2; . . . ;Gm be m disjoint copies of K4 each of which has a distinguished edge
ei � xi yi, �1U i Um�. Let G�m� denote the graph obtained from the disjoint
union of G1 ÿ e1;G2 ÿ e2; . . . ;Gmÿ1 ÿ emÿ1 and Gm by identifying x1; x2; . . . ; xm

into a single vertex x and by identifying y1; y2; . . . ; ym into a single vertex y. The
edge em, with its ends being x and y, is now an edge in G�m�. We shall show that
G�m� does not have a Z3-NZF, and therefore cannot be Z3-connected.

Suppose that G�m� has a Z3-NZF. Thus G�m� is oriented and there is a func-
tion f A F ��G�m�;Z3� such that q f � 0. Expressing Z3 � f0; 1;ÿ1g and reversing
the direction of the edges in G�m� if necessary, we may assume that f �e� � 1,
Ee A E�G�m��. For each i with 1U i Um, denote V�Gi� � fxi; yi; ui; vig, where ui

and vi are the two vertices of this subgraph Gi with degree 3 in G�m�. Since
f �e� � 1; Ee A E�G�m��, we may assume that all three edges incident with ui

are directed out from ui, and so all three edges incident with vi are directed into vi,
for each i with 1U iUm. It follows by q f � 0 that f �em� � 0, contrary to the
assumption that f A F ��G�m�;Z3�. r

Example 4.4. Being chordal cannot be relaxed in Theorem 4.2 either, in the sense
that there are 4-edge-connected non-chordal graphs that are not Z3-connected.
The following class of graphs (together with its proof ) is based on an example
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given by Jaeger et al in [7]. Let mV 1 be an integer and let C1 and C2 be two
disjoint cycles of 6m vertices. Denote

C1 � u1u2 � � � u6mu1 and C2 � v1v2 � � � v6mv1:

Obtain a graph J�m� from the disjoint union of C1 and C2 by adding these new

edges: 63m

j�1fu2jÿ1v2jÿ1; u2jv2j; u2jÿ1v2j; u2jv2jÿ1g. Note that J�m� has 3m disjoint
K4's and every independent set of J�m� has at most one vertex in each of these 3m
K4's. Thus every independent set in J�m� has at most 3m vertices. Note also that
jV�J�m��j � 12m and jE�J�m��j � 24m. It is easy to see that J�m� is 4-regular and
4-connected.

We argue by contradiction to show that J�m� is not Z3-connected. Let b1 1 be
a constant function de®ned on V�J�m��. Since jV�J�m��j � 12m, b A Z�J�m�;Z3�.
Assume that there is a function f A F ��J�m�;Z3� such that q f � b. Expressing
Z3 � f0; 1;ÿ1g and reversing the direction of edges in J�m� if necessary, we may
assume that f �e� � 1; Ee A E�J�m��. Since J�m� is 4-regular, each vertex in J�m�
has either out degree 1 or 4. Let Vi denote the number of vertices of out degree i

in J�m�, where i A f1; 4g. Then V1 � V4 � jV�J�m��j � 12m and 4V4 � V1 �
jE�J�m��j � 24m. It follows that V1 � 8m and V4 � 4m. However, since every
independent set in J�m� has at most 3m vertices, there must be two vertices in V4

that are adjacent in J�m�, which is impossible since J�m� is 4-regular. r

Theorem 4.2 will follow from the following stronger Theorem 4.7, which
shows that the graphs presented in Example 4.3 are basically the only exceptional
graphs for a 3-edge-connected chordal graph to be A-connected, for any Abelian
group A with jAjV 3. We need two more easy observations.

Lemma 4.5. If G is simple, 2-connected, 3-regular and chordal, then G is isomorphic
to a K4.

Proof. Pick v A V�G� and denote N�v� � fv1; v2; v3g. Since G is 2-connected and
simple, the two edges vv1 and vv2 must be in a shortest cycle C of G of length at
least 3. Since G is chordal, C must have length exactly 3, and so v1v2 A E�G�.
Similarly, we may assume v1v3; v2v3 A E�G�. Since G is 3-regular and connected,
V�G� � fv; v1; v2; v3g, and so G is isomorphic to a K4. r

Let K4 be a given complete graph on 4 vertices fu; v; x; yg with a distinguished
edge a � xy, and let G be a graph disjoint from this K4 with jE�G�jV 2 and with a
distinguished edge a 0 � x 0 y 0. De®ne a new graph G lK4 to be the graph obtained
from the disjoint union of G ÿ e 0 and K4 by identifying x 0 and x to form a
new vertex, also called x, and by identifying y 0 and y to form a new vertex, also
called y. Note that the edge a � xy is now an edge of G lK4 and that G �
G lK4 ÿ fu; vg.

Lemma 4.6. G lK4 A hZ3i if and only if G A hZ3i.

Proof. Let G 0 � G lK4. We shall use the notation in the de®nition of G lK4 and
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assume that V�G 0� � V�G�U fu; vg and V�K4� � fu; v; x; yg. In the proof below,
K4 denotes the given complete graph on 4 vertices in the de®nition of G lK4.

Assume that G A hZ3i. Let X � fxu; xvg. Then G 0�x;X � has y as a cut vertex.

Note that the graph G 0�x;X �=G is spanned by a 3-cycle with one edge of this 3-cycle
in a 2-cycle. By Proposition 3.2(C3) and by Lemma 3.3 (with n � 2),
G�x;X � 0=G A hZ3i. By Proposition 3.2(C3) and by the assumption that G A hZ3i,

G 0�x;X � A hZ3i. By Lemma 3.1(i) and by G 0�x;X � A hZ3i, G 0 A hZ3i.

Conversely, assume that G 0 A hZ3i. Let b A Z�G;Z3�. We shall show that there
is a function f A F ��G;Z3� such that q f � b. De®ne b 0 : V�G 0� ! Z3 by

b 0�z� �
b�z� if z A V�G 0� ÿ fu; vg
0 if z A fu; vg:

(

Since V�G 0� � V�G�U fu; vg and since b 0�u� � b 0�v� � 0, b 0 A Z�G 0;Z3�. Since
G 0 A Z3, there is a function f 0 A F ��G 0;Z3� such that q f 0 � b 0. Expressing
Z3 � f0; 1;ÿ1g and reversing the direction on E�K4�, we may assume that
f 0�e� � 1; Ee A E�K4�. Since u and v has degree 3 in G 0, we may assume that the
three edges incident with u are all oriented away from u, and so the three edges
incident with v are oriented into v. Let f be the restriction of f 0 on E�G�. Then it is
easy to see that q f � b. Since f 0 A F ��G 0:Z3�, f A F ��G;Z3�. It follows by de®-
nition that G A hZ3i. r

Remark. Lemma 4.6 provides an alternative proof for the fact that the graphs
G�m� in Example 4.3 are not Z3-connected.

Theorem 4.7. Let G be a 3-edge-connected chordal graph. Then one of the following

holds:

(i) G is A-connected, for any Abelian group A with jAjV 3; or

(ii) G has a block isomorphic to a K4; or

(iii) G has a subgraph G1 such that G1 B hZ3i and such that G � G1 lK4.

Proof. Let A be an Abelian group with jAjV 3 and let G be a counterexample
such that G B hAi and jE�G�j minimized.

Suppose ®rst that G has a nontrivial subgraph H (a subgraph with at least one
edge) such that H A hAi. Then by the de®nition of contraction, G=H, the graph
obtained from G by contracting all edges in H, is also 3-edge-connected and
chordal. Since jE�H�jV 1 and since jE�G=H�j � jE�G�j ÿ jE�H�j, by the mini-
mality of jE�G�j, G=H A hAi By Proposition 3.2(C3), G A hAi, a contradiction.
Therefore, G does not have any nontrivial subgraph H such that H A hAi.

Since G is chordal, G must have a 3-cycle. By Lemma 3.3, if jAjV 4, then 3-
cycles are in hAi. Since G must not have a nontrivial subgraph in hAi, it must be
the case that A � Z3.

By Lemma 3.3 and since G must not have nontrivial subgraph in hZ3i, we
may assume that G has no loops and 2-cycles. Therefore by the minimality of G

and by Proposition 3.6, we assume that G does not satisfy any of (i)±(iii) of The-
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orem 4.7, that G is simple, 2-connected and chordal, and that

G does not contain a W4 as a subgraph: �2�

Let v A V�G� be an arbitrary vertex and let N�v� � fv1; v2; . . . ; vmg. Since G is
simple, m � d�v�V 3. De®ne N�v� � N�v�U fvg and let

Gv � G�N�v�� and Gv � G�N�v��

be induced subgraphs of G. We ®rst prove the following claims.

Claim 1. Gv is connected.
Suppose that Gv has more than one components. Since G is 2-connected, there

is a shortest cycle C that contains v, one vertex in one component of Gv and a
vertex in another component of Gv. Since G is a simple chordal graph and since C

is a shortest cycle, jE�C�j � 3 and so there is an edge in G joining the two com-
ponents of Gv. Since Gv is an induced subgraph, this edge should have been in Gv,
a contradiction. This proves Claim 1.

Claim 2. Either Gv is not 2-connected, or both d�v� � 3 and Gv is isomorphic to a

K4.
Suppose that Gv is 2-connected. If d�v�V 4, then by Lemma 4.1, Gv must have

a cycle of length at least 4. Since G is chordal, Gv must have a cycle of length 4.
Therefore, G�v� has a W4, contrary to (2). Hence we assume that d�v� � 3. Then
Gv is a 2-connected graph with 3 vertices. Hence Gv is isomorphic to a K4. This
proves Claim 2.

Claim 3. Every vertex v A V�G� such that Gv is connected but not 2-connected must

be in a vertex cut of cardinality 2 in G.

Assume that v A V�G� is a vertex such that Gv is not 2-connected and such
that v is not in a vertex cut of cardinality 2. Let N�v� � fv1; v2; . . . ; vmg with
m � d�v�V 3. Since Gv is connected but not 2-connected, Gv has a cut vertex vm

(say). It follows that there are nontrivial and connected subgraphs L1;L2 of Gv

such that Gv � L1 UL2 and such that V�L1�VV�L2� � fvmg. We may assume that
v1 is adjacent to vm in L1 and v2 is adjacent to vm in L2.

Since fv; vmg is not a vertex cut of G, G ÿ fv; vmg has a �v1; v2�-path. Let P

denote a shortest �vi; vj�-path in G ÿ fv; vmg such that vi A V�L1� and vj A V�L2�.
Then since G is chordal, P must be a path of length one, and so vivj A E�G�. It
follows that vm is not a cut vertex of Gv, a contradiction. This proves Claim 3.

If G is cubic, then Theorem 4.7(ii) follows from Lemma 4.5, contrary to the
assumption that G is a counterexample. Hence we may assume D�G�V 4.

A subgraph H of G is called a 2-block if H is 2-connected and if jAG�H�j � 2.
A 2-block H of G is minimal if H is a 2-block and if H does not properly contain
another 2-block of G. By Claim 1, Claim 2 and by the assumption that D�G�V 4,
G must have a vertex v A V�G� such that Gv is connected but not 2-connected. By
Claim 3, G has a minimal 2-block H.

Since H is 2-connected and simple, jV�H�jV 3. Since jAG�H�j � 2, V�H�ÿ
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AG�H�0q. Since H is a minimal 2-block, every vertex in V�H� ÿ AG�H� cannot
be in a vertex cut of cardinality 2. By Claim 1 and Claim 3, Gv is 2-connected,
Ev A V�H� ÿ AG�H�. By Claim 2, Ev A V�H� ÿ AG�H�, d�v� � 3 and Gv is iso-
morphic to a K4. Thus if jV�H�jV 5, then one vertex in Gv will be a cut-vertex of
G, contrary to the assumption that G is 2-connected. Hence jV�H�j � 4 and so H

is isomorphic to a K4. By Lemma 4.6, Theorem 4.7(iii) follows, contrary to the
assumption that G is a counterexample.

This contradiction establishes the theorem. r

Note that K4 B hZ3i. By Proposition 3.2(C2) and by Lemma 4.5, graphs with
a structure described in (ii) or (iii) of Theorem 4.7 cannot be in hZ3i. Thus
Theorem 4.7 can also be stated as the following characterization.

Corollary 4.8. Let G be a 3-edge-connected chordal graph. The G is A-connected for

every Abelian group A with jAjV 3 if and only if G does not have the structure

described in Theorem 4.7(ii) and (iii).

Proof of Theorem 4.2. When G is 4-edge-connected, neither Theorem 4.7(ii) nor
Theorem 4.7(iii) will occur, and so by Corollary 4.8, G A hAi; EA with jAjV 3. r
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