
Extending a Partial
Nowhere-Zero 4-Flow

Hong–Jian Lai
DEPARTMENT OF MATHEMATICS

WEST VIRGINIA UNIVERSITY
MORGANTOWN, WV 26506

Received April 11, 1997; revised October 28, 1998

Abstract: In [J Combin Theory Ser B, 26 (1979), 205–216], Jaeger showed that
every graph with 2 edge-disjoint spanning trees admits a nowhere-zero 4-flow. In
[J Combin Theory Ser B, 56 (1992), 165–182], Jaeger et al. extended this result by
showing that, if A is an abelian group with |A| = 4, then every graph with 2 edge-
disjoint spanning trees is A-connected. As graphs with 2 edge-disjoint spanning
trees are all collapsible, we in this note improve the latter result by showing that,
if A is an abelian group with |A| = 4, then every collapsible graph is A-connected.
This allows us to prove the following generalization of Jaeger’s theorem: Let G
be a graph with 2 edge-disjoint spanning trees and let M be an edge cut of G
with |M | ≤ 4. Then either any partial nowhere-zero 4-flow on M can be extended
to a nowhere-zero 4-flow of the whole graph G, or G can be contracted to one
of three configurations, including the wheel of 5 vertices, in which cases certain
partial nowhere-zero 4-flows on M cannot be extended. Our results also improve
a theorem of Catlin in [J Graph Theory, 13 (1989), 465–483]. c© 1999 John Wiley &

Sons, Inc. J Graph Theory 30: 277–288, 1999
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1. INTRODUCTION

We consider finite graphs, which may contain loops or multiple edges. See [1]
for undefined terminology and notations in graph theory and see [8] for those in

c© 1999 John Wiley & Sons, Inc. CCC 0364-9024/99/040277-12
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algebra. The groups considered in this article are finite abelian (additive) groups.
For a finite abelian groupA, the additive identity ofA will be denoted by 0 (zero)
throughout this article. LetG andH be graphs. IfH is a subgraph ofG, then we
write H ⊆ G; and if H andG are isomorphic, we writeH ∼= G. A graphG is
nontrivial if G is loopless with|E(G)| > 0.

Let G be a digraph. For a vertexv ∈ V (G), let

E−
G(v) = {(u, v) ∈ E(G):u ∈ V (G)}, and

E+
G(v) = {(v, u) ∈ E(G):u ∈ V (G)}.

The subscriptG may be omitted whenG is understood from the context. Let
E(v) = E+(v) ∪ E−(v).

LetA be a nontrivial abelian group and letA∗ denote the set of nonzero elements
in A. Define

F (G, A) = {f :E(G) → A} andF ∗(G, A) = {f :E(G) → A∗}.

For eachf ∈ F (G, A), the boundary off is a function∂f : V (G) → A defined by

∂f(v) =
∑

e∈E+(v)

f(e) −
∑

e∈E−(v)

f(e),

where ‘‘
∑

’’ refers to the addition inA. In this article, An empty sum has value
zero. LetS be a nonempty set and letA be a group. Throughout this article, we
shall adopt the following convenience: ifX ⊆ S and if f : X → A is a function,
then we regardf as a functionf : S → A such thatf(e) = 0 for all e ∈ S − X.
For any functionf : S 7→ A, the setsupp(f) = {e ∈ S: f(e) 6= 0} is called the
support off .

Let G be an undirected graph andA be an abelian group. Denote

Z(G, A) =


b:V (G) → A such that

∑
v∈V (G)

b(v) = 0


 .

A graphG is A-connected ifG has an orientationG′ such that, for every function
b ∈ Z(G, A), there is a functionf ∈ F ∗(G′, A) such thatb = ∂f . For an abelian
groupA, let 〈A〉 denote the family of graphs that areA-connected. It is observed
in [11] thatG ∈ 〈A〉 is independent of the orientation ofG.

AnA-nowhere-zero-flow (abbreviated asA-NZF) inG is a functionf ∈ F ∗(G, A)
such that∂f = 0. The nowhere-zero-flow problems were introduced by Tutte [16],
and recently surveyed by Jaeger in [9]. Tutte in [16] showed that ifA1 andA2 are
two abelian groups with|A1| = |A2|, then a graphG has anA1-NZF if and only if it
has anA2-NZF. Thus, anA-NZF is also called ak-NZF, wherek = |A|. Following
Jaeger [9], letFk denote the collection of graphs that havek-NZF’s.

The concept ofA-connectivity was introduced by Jaeger et al. in [11], where
A-NZF’s were successfully generalized toA-connectivities. A concept similar
to the group connectivity was independently introduced in [12], with a different
motivation from [11].
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For a graphG, let τ(G) denote the maximum number of edge-disjoint spanning
trees contained inG. The following was proved by Jaeger.

Theorem 1.1(Jaeger, [10]). If τ(G) ≥ 2, thenG ∈ F4.
By a theorem of Tutte [16], for any abelian groupA, if |A| = k, then〈A〉 ⊂ Fk.

Thus, Theorem 1.2 below generalizes Theorem 1.1.

Theorem 1.2(Jaeger, Linial, Payan, and Tarsi, [11]). If τ(G) ≥ 2, and if A is
an abelian group with|A| = 4, thenG ∈ 〈A〉.

Let G be a digraph and letM ⊆ E(G). We shall also useM to denoteG[M ],
the subgraph ofG induced by the edge setM . Let W ⊂ V (G) be a nonempty
subset and let̄W = V (G) − W . The oriented edges with tail inW and head
in W̄ is denoted by[W, W̄ ], and the union (viewed as a set of undirected edges)
[W, W̄ ] ∪ [W̄ , W ] is called an edge cut. A functionf ∈ F ∗(M, A) is called a
partialA-NZF of G onM if, for any edge cut[W, W̄ ] ∪ [W̄ , W ] ⊆ M of G,∑

e∈[W,W̄ ]

f(e) −
∑

e∈[W̄ ,W ]

f(e) = 0. (1)

Call anA-NZF f ′ ∈ F ∗(G, A) an extension of a partialA-NZF f onM if f ′(e) =
f(e), for all e ∈ M . A partialA-NZF is extendable if it has an extension.

It has been known that the NZF problem is the dual problem of graph vertex col-
orings. Several classical coloring theorems, such as Grötzsch 3-coloring theorem
of planar graphs and the 5-coloring theorem of planar graphs, have been general-
ized to the version of extending a givenk-coloring of a subgraph to ak-coloring of
the whole graph. (See, for example, [14] and [15], among others.) Therefore, it is
natural to ask the following question:

(P1) When can a partial 4-NZF be extended to a 4-NZF ofG?
Collapsible graphs are first introduced by Catlin [3]. LetG be a graph and

let O(G) denote the set of vertices ofG that have odd degree inG. A graphG is
collapsible if, for any subsetX ⊆ V (G) with |X| even,G has a spanning connected
subgraphΓ with O(Γ) = X. (Such a subgraphΓ is called anX-subgraph ofG.)
Note thatK1, the edgeless graph of order 1, is collapsible. Collapsible graphs
have been found very useful in several applications. See Catlin’s survey [4] and its
update [7] for the literature of collapsible graphs.

Catlin showed that every graph with 2 edge-disjoint spanning trees is collapsible
(Theorem 2.1 in Section 2). Thus, the following problem arises naturally:

(P2) If A is an abelian group with|A| = 4, is every collapsible graphA-
connected? In this article, we shall investigate problems P1 and P2.

Even whenτ(G) ≥ 2, a partialA-NZF may not be extendable. Let us consider
the following examples.

Example 1.1. Let C = v1v2v3 · · · vnv1 denote ann-cycle. A wheel ofn + 1
vertices, denoted byWn, has vertex setV and edge setE as follows:

V = V (C) ∪ {v0} andE = E(C) ∪ {v0vi: 1 ≤ i ≤ n}.
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The vertexv0 is called the center of the wheel, and the edges in{v0vi: 1 ≤ i ≤ n}
are called the spokes of the wheel. Note thatτ(Wn) = 2, for n ≥ 2. OrientW4
so thatv0vi is directed fromv0 to vi, for each1 ≤ i ≤ 4; and orient the edges in
E(C) so thatvivi+1 is directed fromvi to vi+1, for 1 ≤ i ≤ 3, andv4v1 from v4
to v1. Let A = Z4, the cyclic group of order 4, letf = 1 be a constant function
in F ∗(E(v0), Z4). Then∂f(v0) = 0, and it is easy to see thatf satisfies (1). Iff
could be extended to anA-NZFf1 ∈ F ∗(W4, Z4), then letx = f(v4v1). It follows
by ∂f1 = 0 thatf1(vivi+1) = x + i, for eachi with 1 ≤ i ≤ 3. However, since
|Z4| = 4, and since{x, x + 1, x + 2, x + 3} ⊆ Z4, one ofx, x + 1, x + 2, x + 3
must be zero, and sof1 6∈ F ∗(W4, Z4), a contradiction. Therefore,f cannot be
extended.

Example 1.2. Let K ′
3 be the loopless graph spanned by aK3 with two additional

edges. DenoteV (K ′
3) = {u, v, w} andE(K ′

3) = {e1, e2, e3, e4, e5} such that
e1, e2 are incident withu andv, e3 ande4 with u andw, ande5 with v andw. Then
τ(K ′

3) = 2. Assume thatK ′
3 is so oriented thatu has indegree zero. LetA be a

group of order 4 and leta ∈ A be an element with order 2. Letf ∈ F (K ′
3, A)

be such thatf(e1) = f(e2) = f(e3) = f(e4) = a. Since∂f = 0, f cannot be
extended to aA-NZF of K ′

3.

Example 1.3. Let K ′
3,3 be the simple graph obtained fromK3,3 by adding a new

edgee′. Thenτ(K ′
3,3) = 2. Let u andv denote the two vertices of degree 4 in

K ′
3,3, let v1, v2, andv3 be the vertices that are adjacent to bothu andv, and letw

denote the sixth vertex.
Assume thatK ′

3,3 is so oriented thatu has indegree zero. LetA be a group of
order 4 and leta ∈ A be an element with order 2. Letf ∈ F (E(u), A) be such
thatf(e) = a for each edgee incident withu. Assume thate1, e2, e3 are the edges
in K ′

3,3 joining v with vi, 1 ≤ i ≤ 3, and thate1, e2, ande3 are oriented with tail
v. If f can be extended to anA-NZF f1, then since∂f1(v) = 0, f1(e1) + f1(e2)
+ f1(e3) = f(e′) = a. It follows from the assumption that|A| = 4 that one of
f1(e1), f1(e2) andf1(e3) is a (say(f1(e1) = a). Let e′

1 denote the edge joining
v1 andu. Thenf1(e1) + f(e′

1) = a + a = 0, and so in order for∂f1(v1) = 0, f1
must take 0 as a value at the third edge incident withv1, contrary to the assumption
thatf1 is anA-NZF. Therefore,f cannot be extended.

It turns out that these are exactly the forbidden contraction configurations. Let
G be a graph and letR ⊆ E(G) be an edge subset. The contractionG/R is the
graph obtained fromG by identifying the ends of each edge inR and by deleting
the resulting loops. IfH is a subgraph ofG, then we useG/H for G/E(H), and
we defineG/∅ = G.

The following result is obtained.

Theorem 1.3. If τ(G) ≥ 2 and if M ⊆ E(G) is an edge cut ofG with |M | at
most4, then, for any partial4-NZFf onM, exactly one of the following holds:

(i) f can be extended to a4-NZF ofG;
(ii ) G can be contracted to a wheelW4 in such a way that the spoke edges of

this wheel are exactly the edges inM ;
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(iii ) G can be contracted to aK ′
3 in such a way that the edges incident with the

vertex of degree4 in thisK ′
3 are exactly the edges inM ;

(iv) G can be contracted to aK ′
3,3 in such a way that the edges incident with a

vertex of degree4 in thisK ′
3,3 are exactly the edges inM.

When G is 4-edge-connected,τ(G) ≥ 2 and none of (ii), (iii), and (iv) of
Theorem 1.3 will occur. Therefore, we obtain the following corollary.

Corollary 1.1. If G is 4-edge-connected and ifM ⊆ E(G) is an edge cut ofG
with |M | at most4, then, for any partial 4-NZF f on M, f can be extended to a
4-NZF ofG.

In [5], Catlin investigated the following collection of graphs:

F o
4 = {H: for any graphG with H ⊆ G, if G/H ∈ F4 thenG ∈ F4}.

Denoting the collection of collapsible graphs byCL, Catlin in [5] proved the fol-
lowing.

Theorem 1.4(Catlin [5]). CL ⊆ F o
4 .

Catlin in [5] showed that the 4-cycle is inF o
4 − CL, and so the containment

in Theorem 1.4 is indeed strict. One can routinely verify that, ifA is an abelian
group with|A| = 4, then〈A〉 ⊂ F o

4 (Lemma 2.1 in Section 2). Also, the 4-cycle
is not in〈A〉, when|A| = 4. Therefore, Theorem 1.5 below shows that, ifA is an
abelian group with|A| = 4, thenCL ⊆ 〈A〉 ⊂ F o

4 , improving both Theorem 1.2
and Theorem 1.4.

Theorem 1.5. LetG be a collapsible graph and letA be an abelian group with
|A| = 4. ThenG ∈ 〈A〉.

In Section 2, we shall prove Theorem 1.3, assuming Theorem 1.5; and in Section
3, Theorem 1.5 will be proved.

2. PROOF OF THEOREM 1.3

We start with the observations below on graphs in〈A〉.

Proposition 2.1([13]). Let A be an abelian group with|A| ≥ 3. Then each of
the following holds.

(C1) K1 ∈ 〈A〉;
(C2) if G ∈ 〈A〉 and ife ∈ E(G), thenG/e ∈ 〈A〉; and
(C3) if H ∈ 〈A〉 is a subgraph ofG and ifG/H ∈ 〈A〉, thenG ∈ 〈A〉.

(Collections of graphs satisfying (C1)–(C3) are called complete families of con-
nected graphs in [2] by Catlin. See [2] for more on this topic.)

In fact, in [13], we proved a result (Lemma 2.1 below) slightly more general
than (C3) in Proposition 2.1. LetH be a connected subgraph ofG, A be an abelian
group, and letb ∈ Z(G, A). Let vH denote the vertex inG/H onto whichH is
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contracted. DefinebH ∈ Z(G/H, A) by

bH(z) =

{
b(z) if z ∈ V (G/H) − {vH} = V (G) − V (H)∑

v∈V (H) b(v) if z = vH .

Lemma 2.1([13]). Let A be an abelian group and letH be a subgraph ofG
such thatH ∈ 〈A〉. For any b ∈ Z(G, A), and for anyfH ∈ F ∗(G/H, A) with
∂fH = bH , there is anf ∈ F ∗(G, A) such that∂f = b andf(e) = fH(e), for any
e ∈ E(G) − E(G[E(H)]).

In [3], Catlin showed that every graphG has a unique collection of disjoint maxi-
mal collapsible subgraphsH1, H2, . . . , Hc, and the graphG′ = G/(∪c

i=1E(Hi)) is
called the reduction ofG. A graphG is reduced ifG is the reduction of itself. The
edge arboricity of a graphG, denoted bya(G), is the smallest number of forests of
G whose union isG. LetF (G) denote the minimum number of edges that must be
added to the graphG so that the resulting graph has 2 edge-disjoint spanning trees.
The following were proved by Catlin and Catlin et al.

Theorem 2.1. LetG be a connected graph. Each of the following holds.
(i) (Catlin, Theorem2 in [3]) If τ(G) ≥ 2, thenG is collapsible.
(ii ) (Catlin, Theorem8 in [3]) If G is reduced, thena(G) ≤ 2.
(iii ) (Catlin, Theorem7 in [3]) If F (G) ≤ 1, then eitherG is collapsible or the

reduction ofG is K2.
(iv) (Catlin, Han and Lai, [6]) If F (G) ≤ 2, the eitherG is collapsible, or the

reduction ofG is aK2 or a K2,t, for some integert ≥ 1.

Lemma 2.2. LetCn denote the cycle of lengthn and letA be an abelian group
with |A| ≥ 4. Let w1, w2 be the two nonadjacent vertices of degreet in a K2,t,
wheret ≥ 1. Lete0 = w1w2 be an edge not inK2,t. Each of the following holds.

(i) ([11]) C2, C3 ∈ 〈A〉.
(ii ) K2,t + e0 ∈ 〈A〉.
(iii ) Let t ≥ 2 and letv be a vertex of degree2 in K2,t. If b ∈ Z(K2,t, A) such

thatv 6∈ supp(b), then there is a functionf ∈ F ∗(K2,t, A) such that∂f = b.
(iv) Let v ∈ V (K2,4) be a vertex of degree4. If b ∈ Z(K2,4, A) such that

b(v) = 0, then there is a functionf ∈ F ∗(K2,4, A) such that∂f = b.
(v) Letu, v be the two vertices of degree3 in K2,3. If b ∈ Z(K2,3, A) such that

b(u) = b(v) = 0, then then there is a functionf ∈ F ∗(K2,3, A) such that∂f = b.

Proof. Lemma 2.2(ii) follows from Lemma 2.2(i) and Proposition 2.1(C3).
For Lemma 2.2(iii), letv andb satisfy the hypothesis of Lemma 2.2(iii), and

let e′, e′′ be the edges incident withv in K2,t. ThenK2,t/{e′} ∼= K2,t−1 + e0.
RegardV (K2,t/{e′}) = V (K2,t − v), and letb′ denote the restriction ofb to
V (K2,t − v). Sincev 6∈ supp(b), b′ ∈ Z(K2,t/{e′}, A). By Lemma 2.2(ii), there
is a functionf ′ ∈ F ∗(K2,t/{e′}, A) such that∂f ′ = b′. Definef ∈ F ∗(K2,t, A)
by f(e) = f ′(e), if e 6= e′ andf(e′) = f ′(e′′). Then∂f = b, as desired.

For Lemma 2.2(iv), letv andb satisfy the hypothesis of Lemma 2.2(iv), and let
v1, v2, v3, v4 be the 4 vertices of degree 2 inK2,4. Obtain a new graphG from
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K2,4 − v by adding two new edgese′ = v1v2 ande′′ = v3v4. Sinceb(v) = 0, b ∈
Z(G, A). Since|A| ≥ 4 and by Lemma 2.2(i),G ∈ 〈A〉. Thus, there is a function
f ′ ∈ F ∗(G′, A) such that∂f ′ = b. Assume thate′ is oriented fromv1 to v2,
ande′′ is oriented fromv3 to v4. And the edges inE(K2,4) − E(G) are oriented
so that these edges are oriented fromv1 to v, v to v2, v3 to v, andv to v4. Let
f ∈ F ∗(K2,4, A) be defined as follows:

f(e) =




f ′(e′) if e ∈ {v1v, vv2}
f ′(e′′) if e ∈ {v3v, vv4}
f ′(e) otherwise.

Then∂f = b, as desired.
For Lemma 2.2(v), letu, v, andb satisfy the hypothesis of Lemma 2.2(v). Let

v1, v2, v3 be the vertices of degree 2 inK2,3 and denotea1 = b(v1), a2 = b(v2)
anda3 = b(v3). By Lemma 2.2(iii), we may assume thatai 6= 0, 1 ≤ i ≤ 3.
The edges ofK2,3 are oriented so that bothu andv have indegree zero. Define
f ∈ F ∗(K2,3, A) as follows:f(uv1) = f(vv2) = a3, f(uv3) = f(vv1) = a2, and
f(vv3) = f(uv2) = a1. Then, sinceb ∈ Z(K2,3, A), a1 + a2 + a3 = 0, and so
∂f = b.

Lemma 2.3. if τ(G) ≥ 2 and if v ∈ V (G) is a vertex of degree at most4 in G,
then for any partial4-NZFf onE(v), exactly one of the following holds:

(i) f can be extended to a4-NZF ofG;
(ii ) G can be contracted to a wheelW4 in such a way that the spoke edges of

this wheel are exactly the edges inE(v);
(iii ) G can be contracted to aK ′

3 in such a way that the edges incident with the
vertex of degree4 in thisK ′

3 are exactly the edges inE(v);
(iv) G can be contracted to aK ′

3,3 in such a way that the edges incident with a
vertex of degree4 in thisK ′

3,3 are exactly the edges inE(v).

Proof. Let A be an abelian group of order 4 and letG be a counterexample to
Theorem 1.3 with as few vertices as possible. Letv ∈ V (G) with |E(v)| ≤ 4.
Without loss of generality, we may assume that edges inE(v) are all directed
out from v. Let v1, . . . , vd be the vertices inG that are adjacent tov. Then
d ≤ |E(v)| ≤ 4. SinceG is a counterexample, there is a partialA-NZF f ∈
F ∗(E(v), A) such that neither (i) nor (ii) of Lemma 2.3 holds. Letb: V (G−v) 7→ A
by b(u) = 0 if u ∈ V (G) − {v1, . . . , vd}, andb(vi) =

∑
j f(eij) for eachi with

1 ≤ i ≤ d, where theeij ’s are the edges inE(v) that join v and vi. By (1),
0 = ∂f(v) = − ∑d

i=1
∑

j f(eij), and sob ∈ Z(G − v, A).
Case1. G − v is disconnected.

Sinceτ(G) ≥ 2, G is 2-edge-connected, and so each of the following must hold:
(A) G − v has two componentsG1 andG2;
(B) |E(v)| = 4, and there are exactly 2 edges inE(v) joining v to Gi, for each

i with 1 ≤ i ≤ 2; and
(C) for i = 1, 2, Gi is either aK1, or τ(Gi) ≥ 2.
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If both G1 = G2 = K1, thenE(G) = E(v) and sof ∈ F ∗(G, A) already.
Assume that someGi 6= K1. By (B), τ(Gi) ≥ 2. By Theorem 2.1(i) and Theorem
1.5,Gi ∈ 〈A〉. Assume thatei1 , ei2 ∈ E(v) are the two edges joiningv tovi1 , vi2 ∈
V (Gi), respectively. (Note thatvi1 = vi2 is possible). Sincef is a partialA-NZF,
f(ei1) + f(ei2) = 0. Let bi: V (Gi) 7→ A by bi(vi1) = f(ei1), bi(vi2) = f(ei2)
if vi1 6= vi2 , bi(vi1) = f(ei1) + f(ei2) if vi1 = vi2 , and bi(z) = 0 for each
z ∈ V (G) − {vi1 , vi2}.

Then by the assumption thatf is a partialA-NZF, bi ∈ Z(Gi, A). SinceGi ∈
〈A〉, there is a functionfi ∈ F ∗(Gi, A) such that∂fi = bi. Hence,f + f1 + f2 is
a desired extension off .
Case2. G − v is connected, but not reduced.

ThenG−v has a nontrivial collapsible subgraphH. SinceH ⊆ G−v, H ⊂ G.
Sinceτ(G) ≥ 2, τ(G/H) ≥ 2 also. SinceH is nontrivial,|E(G)| > |E(G/H)|.
By the minimality ofG, eitherG/H can be contracted to aW4 with v being the
center of thisW4, whenceG can be contracted to aW4 with v being the center of
theW4; or the partialA-NZF f may be extended to anA-NZF of G/H, whence by
Theorem 1.5 and by Lemma 2.1,f can be extended to anA-NZF of G. In either
case, a contradiction obtains, sinceG is supposed to be a counterexample.
Case3. G − v is connected, nontrivial, and reduced.

Sinceτ(G) ≥ 2 and sinced ≤ 4, F (G − v) ≤ 2. By Theorem 2.1(iv) and by
the assumption of Case 3,G − v is aK2 or aK2,t, for some integert ≥ 1.

If G − v = K2, then byτ(G) ≥ 2, there must be at least three edges inE(v)
joining v to the two ends of the only edgee (say) in thisK2.

If there are exactly two edges inE(v) joining v to each end ofe, then Lemma
2.3(ii) holds. Therefore, we assume that there is only one edge inE(v) joining v
to one end ofe and the other edges inE(v) joining v with the other end ofe. Since
f is a partialA-NZF, it is trivial to see thatf can be extended to anA-NZF of G.
The case whenG − v = K2,1 is similar. Hence, we assume thatG − v = K2,t for
somet ≥ 2.

If t ≥ 5, then, since|E(v)| ≤ 4, there is a vertexw of degree 2 inG − v such
thatb(w) = 0. By Lemma 2.2(iii), there is a functionf ′ ∈ F ∗(G− v, A) such that
∂f ′ = b. It follows thatf + f ′ is a desired extension off .

If t = 4, then, since|E(v)| ≤ 4, either there is a vertexw of degree 2 inG − v
such thatb(w) = 0; or there is a vertexw′ of degree 4 inG−v such thatb(w′) = 0.
By Lemma 2.2(iii) or Lemma 2.2(iv), there is always a functionf ′ ∈ F ∗(G−v, A)
such that∂f ′ = b. It follows thatf + f ′ is a desired extension off .

Assume thatt = 3. Let u andw denote the vertices of degree 3 andv1, v2,
andv3 denote the vertices of degree 2 inK2,3. By Lemma 2.2(iii) and (v), we
may assume thatv1, v2, v3, u are all adjacent tov; but by |E(v)| ≤ 4, w must
not be adjacent tov. Thus,G is contractible to aK ′

3,3, whence Lemma 2.3(iv)
holds.

Therefore, we assume thatt = 2. Sinceτ(G) ≥ 2, we must have|E(v)| = 4.
If G has a vertexz (say) of degree 2, thenb(z) = 0, and so by Lemma 2.2(iii),
there is a functionf ′ ∈ F ∗(G − v, A) such that∂f ′ = b, which meansf + f ′ is
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anA-NZF of G extendingf . Therefore,G = W4, whence Lemma 2.3(ii) holds.
This contradicts the assumption thatG is a counterexample.

Proof of Theorem 1.3. Let M be an edge-cut ofG with |M | ≤ 4, and letf be a
partial 4-NZF onM . We assume that (ii)–(iv) of Theorem 1.3 do not hold to prove
thatf can be extended to a 4-NZF ofG. Let G1 andG2 be two disjoint subgraphs
of G such thatG − M = G1 ∪ G2. If one ofG1 andG2 is aK1, then Theorem 1.3
reduces to Lemma 2.3, and is proved. Hence, we assume that bothG1 andG2 are
nontrivial.

For i = 1, 2, let Ni denote the graph obtained fromG by identifying all the
vertices inV (G3−i) into a single vertexvi. Note thatE(vi) = M . By Lemma 2.3
and by the assumption that (ii)–(iv) of Theorem 1.3 do not hold,f can be extended
to a 4-NZFfi onNi, for i = 1, 2. Sincef1(e) = f2(e) = f(e) for anye ∈ M , and
sincesupp(f1)∩ supp(f2) = M , the functionf1 + f2 − f is a 4-NZF ofG, which
extendsf .

3. PROOF OF THEOREM 1.5

Throughout this section (with the exception of Lemma 3.1),A denotes an abelian
group of order 4 andA′ denotes a subgroup ofA with |A′| = 2. We start with some
easy observations, stated in Lemma 3.1 and Lemma 3.2 below, whose proofs are
outlined or omitted.

Lemma 3.1. Let H be a nontrivial connected graph and letA be an abelian
group with|A| ≥ 2. Then, for any functionf ∈ F ∗(G, A),

∑
v∈V (H) ∂f(v) = 0.

Proof. In the sum

∑
v∈V (H)

∂f(v) =
∑

v∈V (H)




∑
e∈E+(v)

f(e) −
∑

e∈E−(v)

f(e)


 ,

for each edgee ∈ E(G), f(e) appears exactly once with a plus sign and exactly
once with a negative sign and so this sum is zero.

Lemma 3.2. LetA be an abelian group of order4 and letA′ be a subgroup ofA
with |A′| = 2. Let G be a nontrivial connected graph. Then each of the following
holds:

(i) For anya, a′ ∈ A − A′, botha + a′ anda − a′ are inA′.
(ii ) If b ∈ Z(G, A), then|b−1(A − A′)| is even.

Lemma 3.3. Let H be a nontrivial connected graph and letb1 ∈ Z(H, A) be
such thatb−1

1 (A−A′) = O(H). Then there is a functionf1 ∈ F ∗(H, A) such that
∂f1 = b1.

Proof. The lemma is trivial if|E(H)| = 1. We shall argue by contradiction and
assume thatH is a counterexample with|E(H)| minimized. LetX = b−1

1 (A−A′).
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Case1. H has a cut vertexv (say).
Then H has nontrivial connected subgraphsH1 and H2 such thatE(H1) ∩

E(H2) = ∅, E(H1) ∪ E(H2) = E(H) andV (H1) ∩ V (H2) = {v}. For each
i = 1, 2, defineci: V (Hi) 7→ A as follows:

ci(z) =

{
b1(z) if z ∈ V (Hi) − {v}∑

w∈V (H3−i) b1(w) if z = v.
(2)

Sinceb1 ∈ Z(G, A),
∑

z∈V (Hi) ci(z) =
∑

z∈V (H) b1(z) = 0, and soci ∈ Z(Hi, A).
Let di(v) denote the degree ofv in Hi, and assume, without loss of generality, that

if d(v) = d1(v) + d2(v) is odd, (that isv ∈ X), thend1(v) is odd. (3)

Note that ifv 6∈ X = O(H), thend1(v) andd2(v) must have the same parity.
If v ∈ X, then by (3),O(H1) = X ∩ V (H1). Sincec1 ∈ Z(H1, A), |c−1(A −

A′)| is even by Lemma 3.2(ii). It follows thatv ∈ c−1
1 (A − A′) = X ∩ V (H1) =

O(H1). By the minimality ofH, there is a functiong1 ∈ F ∗(H1, A) with ∂g1 = c1.
Note that by (3),d2(v) is even, and so by Lemma 3.2(ii) and byX ∩ V (H1) =
O(H1), c−1

2 (A − A′) = (X − {v}) ∩ V (H2) = O(H2). By the minimality of
H, there is a functiong1 ∈ F ∗(H1, A) with ∂g1 = c1. Note that by (3),d2(v)
is even, and so by Lemma 3.2(ii) and byX ∩ V (H1) = O(H1), c−1

2 (A − A′) =
(X − {v}) ∩ V (H2) = O(H2). By the minimality ofH, there is a function
g2 ∈ F ∗(H2, A) with ∂g2 = c2. Let f1 = g1 + g2. Clearly∂f1(z) = b1(z) if
z 6= v. At v,

∂f1(v) = c1(v) + c2(v) =
∑

w∈V (H1)

b1(w) +
∑

w∈V (H2)

b1(w)

= b1(v) +
∑

w∈V (H)

b1(w) = b1(v). (4)

Therefore,∂f1 = b1, as desired.
Assume then bothd1(v) andd2(v) are even. Then for eachi ∈ {1, 2}, O(Hi) =

O(H) ∩ V (Hi); and so by Lemma 3.2(ii),ci(v) ∈ A′. Therefore,c−1
i (A − A′) =

X ∩V (Hi) = O(Hi). By the minimality ofH, there is a functiongi ∈ F ∗(Hi, A)
with ∂gi = ci, for eachi ∈ {1, 2}. Definef1 = g1 + g2 as before. Then (4) holds
atv and so∂f1 = b1.

Now assume that bothd1(v) andd2(v) are odd. Then, sincev 6∈ O(H), for both
i = 1 andi = 2, |O(H)∩V (Hi)| is odd, and so by Lemma 3.2(ii),ci(v) ∈ A−A′.
Thus,c−1

i (A−A′) = (X ∩V (Hi))∪{v} = O(Hi). Therefore, by the minimality
of H, there is a functiongi ∈ F ∗(Hi, A) with ∂gi = ci, for eachi ∈ {1, 2}. Define
f1 = g1 + g2 as before. Then (4) holds atv and so∂f1 = b1.

This precludes Case 1.
Case2. H has no cut vertices.

Pick e = uv ∈ E(H) and assume thate is directed fromu to v. Choose an
elementa ∈ A − A′ in the following way: ifu, v ∈ V (H) − O(H) or if u, v ∈
O(H), thena is any element inA − A′, and ifu ∈ O(H) andv ∈ V (H) − O(H),
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thena = b1(u). Note that whenu, v ∈ O(H), bothb1(u) andb1(v) are inA − A′,
and so by Lemma 3.2(i),b1(u) − a, b1(v) + a ∈ A′. In the same way, ifu, v ∈
V (H) − O(H), bothb1(u) andb1(v) are inA′, and sob1(u) − a, b1(v) + a ∈ A −
A′. Define a functionfe: {e} 7→ {a}, and letb2 = b1 − ∂fe ∈ Z(H − e, A). Note
thatO(H − e) = (O(H)∪{u, v})− (O(H)∩{u, v}) = b−1

2 (A − A′), and so, by
the minimality ofH, there is a functionf2 ∈ F ∗(H − e, A) such that∂f2 = b2.
Let f1 = fe + f2. Then∂f1 = ∂fe + ∂f2 = ∂fe + b2 = b1. This precludes
Case 2.

Therefore, in any case, a functionf1 ∈ F ∗(H, A) can be found with∂f1 = b1,
contrary to the assumption thatH is a counterexample. This proves the lemma.

Proof of Theorem 1.5. Let G be a collapsible graph,A be an abelian group of
order 4 and letA′ be a subgroup ofA with |A′| = 2. Let b ∈ Z(G, A). We shall
show that there is a functionf ∈ F ∗(G, A) such that∂f = b. LetX = b−1(A−A′).
Note that as|A| = 4 and|A′| = 2, |X| is even.

SinceG is collapsible,G has a spanning connected subgraphH with O(H) = X.
Let f2 ∈ F ∗(E(G) − E(H), A′) and letb2 = ∂f2. By Lemma 3.1,b1 = b − b2 ∈
Z(G, A) = Z(H, A). SinceA′ is a subgroup, and sinceb2 ∈ Z(G, A′), b−1

1 (A −
A′) = b−1(A − A′). By Lemma 3.3, there is a functionf1 ∈ F ∗(H, A) such that
∂f1 = b1. Let f = f1 + f2. Sincesupp(f1) ∩ supp(f2) = E(H) ∩ (E(G) −
E(H)) = ∅ and supp(f1) ∪ supp(f2) = E(G), f ∈ F ∗(G, A). Also ∂f =
∂f1 + ∂f2 = b1 + b2 = b, and so the theorem is established.
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[14] C. Thomassen, Grötzsch’s 3-color theorem and its counterparts for the torus
and the projective plane, J Combin Theory Ser B 62 (1994), 268–279.

[15] C. Thomassen, 5-coloring graphs on the torus, J Combin Theory Ser B 62
(1994), 11–33.

[16] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad J
Math 6 (1954), 80–91.

[17] W. T. Tutte, On the imbedding of linear graph into surfaces, Proc London
Math Soc Ser 2 51 (1949), 464–483.

[18] C. Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker, New
York, 1997.


