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Abstract: In[J Combin Theory Ser B, 26 (1979), 205-216], Jaeger showed that
every graph with 2 edge-disjoint spanning trees admits a nowhere-zero 4-flow. In
[J Combin Theory Ser B, 56 (1992), 165—182], Jaeger et al. extended this result by
showing that, if A is an abelian group with |A| = 4, then every graph with 2 edge-
disjoint spanning trees is A-connected. As graphs with 2 edge-disjoint spanning
trees are all collapsible, we in this note improve the latter result by showing that,
if A is an abelian group with | A| = 4, then every collapsible graph is A-connected.
This allows us to prove the following generalization of Jaeger's theorem: Let G
be a graph with 2 edge-disjoint spanning trees and let M be an edge cut of G
with |M| < 4. Then either any partial nowhere-zero 4-flow on M can be extended
to a nowhere-zero 4-flow of the whole graph G, or G can be contracted to one
of three configurations, including the wheel of 5 vertices, in which cases certain
partial nowhere-zero 4-flows on M cannot be extended. Our results also improve
a theorem of Catlin in [J Graph Theory, 13 (1989), 465-483]. © 1999 John Wiley &
Sons, Inc. J Graph Theory 30: 27288, 1999
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1. INTRODUCTION

We consider finite graphs, which may contain loops or multiple edges. See [1]
for undefined terminology and notations in graph theory and see [8] for those in
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algebra. The groups considered in this article are finite abelian (additive) groups.
For a finite abelian group, the additive identity ofd will be denoted by 0 (zero)
throughout this article. Letf and H be graphs. IfH is a subgraph of7, then we
write H C G; and if H andG are isomorphic, we writédl = G. A graphG is
nontrivial if G is loopless with E(G)| > 0.

Let G be a digraph. For a vertexc V(G), let

Es(v) = {(u,v) € E(G):uw € V(G)}, and
El(w) = {(v,u) € E(G):u e V(G)}

The subscriptG may be omitted wheidr is understood from the context. Let
E(v) = ET(v) U E~(v).

Let A be a nontrivial abelian group and lét denote the set of nonzero elements
in A. Define

F(G,A) ={f:E(G) —» A}andF*(G,A) ={f: E(G) — A*}.
For eachf € F(G, A), the boundary of is a functiondf: V(G) — A defined by

ofw)= > fle)= > flo),

e€E*(v) ecE~(v)

where “>_" refers to the addition inA. In this article, An empty sum has value
zero. LetS be a nonempty set and ldtbe a group. Throughout this article, we
shall adopt the following convenience: Xf C S and if f: X — A is a function,
then we regard as a functionf: S — A such thatf(e) = 0foralle € S — X.
For any functionf: S — A, the setsupp(f) = {e € S: f(e) # 0} is called the
support off.

Let G be an undirected graph antdbe an abelian group. Denote

Z(G, A) = {b: V(G) = Asuchthat > b(v) = o} :
veV(G)

A graphG is A-connected ifG has an orientatior”’ such that, for every function
be Z(G,A), thereis a functiorf € F*(G’, A) such thab = 9f. For an abelian
group A, let (A) denote the family of graphs that a#econnected. It is observed
in [11] thatG € (A) is independent of the orientation 6f

An A-nowhere-zero-flow (abbreviated AsNZF) inGis afunctionf € F*(G, A)
suchthat) f = 0. The nowhere-zero-flow problems were introduced by Tutte [16],
and recently surveyed by Jaeger in [9]. Tutte in [16] showed th&f #ind A are
two abelian groups with4; | = |As|, then a graplix has and;-NZF if and only if it
has and,-NZF. Thus, amd-NZF is also called &-NZF, wherek = | A|. Following
Jaeger [9], lef}, denote the collection of graphs that haw®lZF's.

The concept ofd-connectivity was introduced by Jaeger et al. in [11], where
A-NZF’s were successfully generalized #aconnectivities. A concept similar
to the group connectivity was independently introduced in [12], with a different
motivation from [11].
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For a graphG, let7(G) denote the maximum number of edge-disjoint spanning
trees contained it. The following was proved by Jaeger.

Theorem 1.1(Jaeger, [10]) If 7(G) > 2, thenG € Fjy. n
By a theorem of Tutte [16], for any abelian grodpif |A| = k, then(A) C Fj.
Thus, Theorem 1.2 below generalizes Theorem 1.1.

Theorem 1.2(Jaeger, Linial, Payan, and Tarsi, [11]) If 7(G) > 2, and if A is
an abelian group withA| = 4, thenG € (4). 1

Let G be a digraph and let/ C E(G). We shall also usé/ to denoteG[M],
the subgraph of7 induced by the edge sét. LetW C V(G) be a nonempty
subset and letV = V(G) — W. The oriented edges with tail i’ and head
in W is denoted byW, W], and the union (viewed as a set of undirected edges)
(W, W] U [W,W] is called an edge cut. A functiofi € F*(M, A) is called a
partial A-NZF of G on M if, for any edge cufW, W] u [W, W] C M of G,

Y. flo= > fle)=0. (1)
]

e€[W,IW] e€[W,W

CallanA-NZF f' € F*(G, A) an extension of a partial-NZF f on M if f'(e) =
f(e), foralle € M. A partial A-NZF is extendable if it has an extension.

It has been known that the NZF problem is the dual problem of graph vertex col-
orings. Several classical coloring theorems, such @zSch 3-coloring theorem
of planar graphs and the 5-coloring theorem of planar graphs, have been general-
ized to the version of extending a givkrcoloring of a subgraph to/coloring of
the whole graph. (See, for example, [14] and [15], among others.) Therefore, it is
natural to ask the following question:

(P1) When can a partial 4-NZF be extended to a 4-NZE'"®f

Collapsible graphs are first introduced by Catlin [3]. l&tbe a graph and
let O(G) denote the set of vertices 6f that have odd degree @&. A graphG is
collapsible if, for any subset C V(G) with | X | even,GG has a spanning connected
subgraph™ with O(I') = X. (Such a subgraphi is called anX-subgraph of.)
Note thatK, the edgeless graph of order 1, is collapsible. Collapsible graphs
have been found very useful in several applications. See Catlin’s survey [4] and its
update [7] for the literature of collapsible graphs.

Catlin showed that every graph with 2 edge-disjoint spanning trees is collapsible
(Theorem 2.1 in Section 2). Thus, the following problem arises naturally:

(P2) If A is an abelian group withA| = 4, is every collapsible grapii-
connected? In this article, we shall investigate problems P1 and P2.

Even whenr(G) > 2, a partial A-NZF may not be extendable. Let us consider
the following examples.

Example 1.1. Let C = viv9evs - - - vv1 denote am-cycle. A wheel ofn 4+ 1
vertices, denoted bl/,,, has vertex seit” and edge sek’ as follows:

V=V(C)U{w}andE = E(C) U {vov;: 1 <i <n}.
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The vertexy, is called the center of the wheel, and the edgesiim;: 1 < i <n}
are called the spokes of the wheel. Note th@l,,) = 2, forn > 2. OrientWy
so thatvgv; is directed fromwg to v;, for eachl < i < 4; and orient the edges in
E(C) so thatv;v; 1 is directed fromw; to v;11, for 1 < i < 3, andvsvy from vy
tov;. Let A = Z4, the cyclic group of order 4, lef = 1 be a constant function
in F*(E(vo), Z4). Thendf(vg) = 0, and it is easy to see thitsatisfies (1). Iff
could be extended to at+NZF f, € F*(Wy, Z4), thenletr = f(v4qv1). Itfollows
by 0f1 = 0 that f(vivi+1) = = + 4, for eachi with 1 < ¢ < 3. However, since
|Z4| = 4, and since{z,x + 1,z + 2,z + 3} C Zy,0one ofz,z + 1,z + 2,z + 3
must be zero, and sfy ¢ F*(Wy, Z,), a contradiction. Thereforg, cannot be
extended.

Example 1.2. Let K be the loopless graph spanned hiawith two additional
edges. Denot® (K3) = {u,v,w} and E(K3;) = {e1, ez, e3,e4,e5} such that
e1, es are incident withu andv, e3 ande4 with « andw, andes with v andw. Then
7(K3) = 2. Assume thaf} is so oriented that has indegree zero. Let be a
group of order 4 and let € A be an element with order 2. Lgte F(Kj}, A)
be such thaff(e;) = f(e2) = f(e3) = f(es) = a. Sincedf = 0, f cannot be
extended to a-NZF of K3.

Example 1.3. Let K§73 be the simple graph obtained froRy 3 by adding a new
edgee’. Thent(Kj3) = 2. Letu andv denote the two vertices of degree 4 in
ngg, let v1, v2, andvs be the vertices that are adjacent to botAndv, and letw
denote the sixth vertex.

Assume thati(; 5 is so oriented that has indegree zero. Let be a group of
order 4 and lett € A be an element with order 2. Lg¢te F(E(u), A) be such
that f(e) = a for each edge incident withu. Assume that, e3, e3 are the edges
in Kg,g joining v with v;, 1 < 4 < 3, and thate, es, andeg are oriented with tail
v. If f can be extended to a#-NZF f;, then sinced fi(v) = 0, fi(e1) + fi(e2)

+ fi(e3) = f(€/) = a. It follows from the assumption tha#l| = 4 that one of
fi(e1), fi(e2) and fi(es) is a (say(fi(e1) = a). Lete) denote the edge joining
vy andu. Thenfi(er) + f(€}) = a+ a = 0, and so in order fod f1(v1) = 0, f1
must take 0 as a value at the third edge incident witltontrary to the assumption
that f; is an A-NZF. Therefore,f cannot be extended.

It turns out that these are exactly the forbidden contraction configurations. Let
G be a graph and leR C E(G) be an edge subset. The contract@®nR is the
graph obtained fronds by identifying the ends of each edgefihand by deleting
the resulting loops. I# is a subgraph of7, then we usé&/H for G/E(H ), and
we defineG /0 = G.

The following result is obtained.

Theorem 1.3. If 7(G) > 2 and if M C E(G) is an edge cut of7 with | M| at
most4, then for any partial4-NZF f on M, exactly one of the following holds

(i) f can be extended to&NZF ofG;

(i) G can be contracted to a whe#l, in such a way that the spoke edges of
this wheel are exactly the edgeshin;



EXTENDING A PARTIAL NOWHERE-ZERO 4-FLOW 281

(iii) G can be contracted to &7 in such a way that the edges incident with the
vertex of degred in this K7 are exactly the edges if/;

(iv) G can be contracted to &73 5 in such a way that the edges incident with a
vertex of degred in this K7 ; are exactly the edges it/ n

When G is 4-edge-connected;(G) > 2 and none of (ii), (i), and (iv) of
Theorem 1.3 will occur. Therefore, we obtain the following corollary.

Corollary 1.1.  If G is 4-edge-connected and i C E(G) is an edge cut ofr
with | M| at most4, then for any partial4-NZF f on M, f can be extended to a
4-NZF of G.

In [5], Catlin investigated the following collection of graphs:

Fy = {H:forany graphG with H C G, if G/H € FythenG € F,}.

Denoting the collection of collapsible graphs ©g¢, Catlin in [5] proved the fol-
lowing.

Theorem 1.4(Catlin [5]). CL C F. ]

Catlin in [5] showed that the 4-cycle is iy — CL, and so the containment
in Theorem 1.4 is indeed strict. One can routinely verify that i an abelian
group with|A| = 4, then(4) C F? (Lemma 2.1 in Section 2). Also, the 4-cycle
is notin(A), when|A| = 4. Therefore, Theorem 1.5 below shows thatdifs an
abelian group withA| = 4, thenCL C (A) C Fy, improving both Theorem 1.2
and Theorem 1.4.

Theorem 1.5. LetG be a collapsible graph and let be an abelian group with
|A| = 4. ThenG € (A). i

In Section 2, we shall prove Theorem 1.3, assuming Theorem 1.5; and in Section
3, Theorem 1.5 will be proved.

2. PROOF OF THEOREM 1.3

We start with the observations below on graphgAip.

Proposition 2.1([13]). Let A be an abelian group with4| > 3. Then each of
the following holds

(C1) K, € (A);

(C2)if G € (A) and ife € E(G), thenG/e € (A); and

(C3) if H € (A) isasubgraph otz and if G/H € (A), thenG € (A). 1
(Collections of graphs satisfying (CAIC3) are called complete families of con-
nected graphs in [2] by Catlin. See [2] for more on this topic.)

In fact, in [13], we proved a result (Lemma 2.1 below) slightly more general
than (C3) in Proposition 2.1. Léf be a connected subgraph®f A be an abelian
group, and leb € Z(G, A). Letvy denote the vertex id//H onto whichH is
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contracted. Definéy € Z(G/H, A) by

b(z) = 4 2 it 2 € V(G/H) — {vn} = V(G) — V(H)
HE) =Y Coevn bv) if 2 =g,

Lemma 2.1([13]). Let A be an abelian group and le be a subgraph o€~
such thatd € (A). Foranyb € Z(G, A), and for anyfy € F*(G/H, A) with
Ofu = bu,thereisanf € F*(G, A) suchtha®f = bandf(e) = fu(e), for any
e € E(G) — E(GIE(H)). ;
In[3], Catlin showed that every grajghhas a unique collection of disjoint maxi-
mal collapsible subgraph,, Hs, ..., H., and the grapl’ = G/(US_, E(H;)) is
called the reduction af/. A graphd is reduced ifG is the reduction of itself. The
edge arboricity of a grapf¥, denoted by:(G), is the smallest number of forests of
G whose union ig7. Let F'(G) denote the minimum number of edges that must be
added to the grapff so that the resulting graph has 2 edge-disjoint spanning trees.
The following were proved by Catlin and Catlin et al.

Theorem 2.1. LetG be a connected grapltach of the following holds

(i) (Catlin, Theoren®in [3]) If 7(G) > 2, thenG is collapsible

(i) (Catlin, TheorenBin [3]) If G is reducedthena(G) < 2.

(ii) (Catlin, Theorenv in [3]) If F(G) < 1, then eitherG is collapsible or the
reduction ofG is K.

(iv) (Catlin, Han and Laj [6]) If F(G) < 2, the eitherG is collapsible or the
reduction ofG is a K, or a Ko ¢, for some integet > 1.

Lemma 2.2. LetC, denote the cycle of lengthand letA be an abelian group
with |A| > 4. Letw;, wo be the two nonadjacent vertices of degteie a K,
wheret > 1. Leteg = wjw, be an edge not ik, ;. Each of the following holds

() ([11]) C3, C5 € (A).

(i) K2t +eo € (A).

(iii) Lett > 2 and letv be a vertex of degre2in Ky ;. If b € Z(K3;, A) such
thatv ¢ supp(b), then there is a functioff € F*(K;, A) such tha f = b.

(iv) Letv € V(Ky4) be a vertex of degred. If b € Z(K34, A) such that
b(v) = 0, then there is a functiorf € F* (K24, A) such thatdf = b.

(v) Letu, v be the two vertices of degr&in Ky 3. If b € Z(K> 3, A) such that
b(u) = b(v) = 0, then then there is a functiof € F* (K>3, A) suchthaf = b.

Proof. Lemma 2.2(ii) follows from Lemma 2.2(i) and Proposition 2.1(C3).

For Lemma 2.2(iii), letv andb satisfy the hypothesis of Lemma 2.2(iii), and
let ¢/, ¢” be the edges incident within Ky;. ThenKy;/{e'} = Ks;_1 + eo.
RegardV (Ky:/{€e'}) = V(K2:+ — v), and lett/ denote the restriction df to
V(Kay —v). Sincev & supp(b), b’ € Z(Ky/{€'}, A). By Lemma 2.2(ii), there
is a functionf’ € F*(Ks;/{e'}, A) such tha®f’ = V. Definef € F*(Ky;, A)
by f(e) = f'(e),if e # ¢ and f(e/) = f'(¢”). Thendf = b, as desired.

For Lemma 2.2(iv), leb andb satisfy the hypothesis of Lemma 2.2(iv), and let
v1,v2,v3,v4 be the 4 vertices of degree 2 Iy 4. Obtain a new grapld: from
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Ky 4 — v by adding two new edges = vyv, ande” = vzvy. Sinceb(v) = 0,b €
Z(G,A). Since|A| > 4 and by Lemma 2.2(i)7 € (A). Thus, there is a function
€ F*(G', A) such thatof’ = b. Assume that’ is oriented fromv; to v,
ande” is oriented fromws to v4. And the edges itE (K> 4) — E(G) are oriented
so that these edges are oriented frojmto v, v to ve, v3 to v, andv to vy. Let
f € F*(Ky4,A) be defined as follows:

f(€) if e e {vv,vv}
fle) = { f(€") if e € {vsv,vvs}
f'(e) otherwise

Thendf = b, as desired.

For Lemma 2.2(v), let,, v, andb satisfy the hypothesis of Lemma 2.2(v). Let
v1,v2, v3 be the vertices of degree 2 i, 3 and denoter; = b(v1), a2 = b(v2)
andas = b(v3). By Lemma 2.2(iii), we may assume that # 0,1 < i < 3.
The edges of, 3 are oriented so that bothhandv have indegree zero. Define
f € F*(Ky3,A) asfollows: f(uvy) = f(vv2) = a3, f(uvs) = f(vv1) = ag, and
f(vvg) = f(uvz) = ai. Then, sincé € Z(K23,A),a1 + a2 + a3 = 0, and so
of =b. 1

Lemma2.3. if 7(G) > 2andifv € V(G) is a vertex of degree at mogin G,
then for any partiah-NZF f on E(v), exactly one of the following holds

(i) f can be extended to&NZF of G;

(i) G can be contracted to a whe#l, in such a way that the spoke edges of
this wheel are exactly the edgesiitfv);

(iii) G can be contracted to &5 in such a way that the edges incident with the
vertex of degred in this K7 are exactly the edges ifi(v);

(iv) G can be contracted to &3 5 in such a way that the edges incident with a
vertex of degred in this K73 ; are exactly the edges ii(v).

Proof. Let A be an abelian group of order 4 and {gtbe a counterexample to
Theorem 1.3 with as few vertices as possible. tet V(G) with |E(v)| < 4.
Without loss of generality, we may assume that edgeg(in) are all directed
out fromwv. Letwy,...,vq be the vertices irG that are adjacent to. Then
d < |E(v)] < 4. SinceG is a counterexample, there is a partiNZF f <
F*(E(v), A) suchthatneither (i) nor (ii) of Lemma 2.3 holds. kel (G—v) — A
by b(u) = 0if u € V(G) — {v1,...,vq}, andb(v;) = 3, f(e;;) for eachi with
1 < ¢ < d, where thee;;’s are the edges i (v) that joinv andv;. By (1),
0=0f(v) = -0, f(e;), and sb € Z(G — v, A).

Casel. G —wvisdisconnected

Sincer(G) > 2, G is 2-edge-connected, and so each of the following must hold:

(A) G — v has two component§; andGo;

(B) |E(v)| = 4, and there are exactly 2 edgeshlifv) joining v to G;, for each
swithl <¢<2;and

(C) fori =1,2,G; is either ak, or 7(G;) > 2.



284 JOURNAL OF GRAPH THEORY

If both G; = G2 = K3, thenE(G) = E(v) and sof € F*(G, A) already.
Assume that som&; # K. By (B), 7(G;) > 2. By Theorem 2.1(i) and Theorem
1.5,G; € (A). Assumethat;, ,e;, € E(v) are the two edges joiningtov;, , v;, €
V(G), respectively. (Note that;, = v;, is possible). Sinc¢ is a partialA-NZF,
f(ei) + f(eip) = 0. Letb;r VI(Gi) = Abybi(vi,) = flei), bi(viy) = flei,)
if vy, # viy,bi(vi,) = fley) + fei,) if vy, = v, andb;(z) = 0 for each
z € V(GQ) —{viy, viy }-

Then by the assumption thétis a partialA-NZF, b; € Z(G;, A). SinceG; €
(A), there is a functiorf; € F*(G;, A) such thab f; = b;. Hence,f + f1 + f2is
a desired extension gf.

Case2. G — v is connectedbut not reduced

ThenG — v has a nontrivial collapsible subgraph SinceH C G—v, H C G.
Sincer(G) > 2,7(G/H) > 2 also. SinceH is nontrivial, |[E(G)| > |E(G/H)].
By the minimality of G, eitherG/H can be contracted to &, with v being the
center of this¥,, whenceG can be contracted to1&, with v being the center of
theWy; or the partialA-NZF f may be extended to af+tNZF of G/ H, whence by
Theorem 1.5 and by Lemma 2.1 ,can be extended to at-rNZF of G. In either
case, a contradiction obtains, sinGas supposed to be a counterexample.
Case3. G — v is connectegdnontrivial, and reduced

Sincer(G) > 2 and sincel < 4, F(G — v) < 2. By Theorem 2.1(iv) and by
the assumption of Case @, — v is aK, or aK»;, for some integet > 1.

If G —v = Ko, then byr(G) > 2, there must be at least three edge&ifv)
joining v to the two ends of the only edgg(say) in thisK,.

If there are exactly two edges #i(v) joining v to each end oé, then Lemma
2.3(ii) holds. Therefore, we assume that there is only one ed@g:if joining v
to one end ot and the other edges #i(v) joining v with the other end of. Since
f is a partialA-NZF, it is trivial to see thaff can be extended to afi-NZF of G.
The case whetiy — v = K> ; is similar. Hence, we assume tiGit— v = K ; for
somet > 2.

If + > 5, then, sincéFE(v)| < 4, there is a vertexw of degree 2 inG — v such
thatb(w) = 0. By Lemma 2.2(iii), there is a functioff € F*(G — v, A) such that
df" = b. It follows that f + f’ is a desired extension gf

If t =4, then, sinceE(v)| < 4, either there is a vertex of degree 2 irG — v
such thab(w) = 0; or there is a vertex’ of degree 4 inG — v such thab(w’) = 0.
By Lemma 2.2(iii) or Lemma 2.2(iv), there is always a functiire F*(G — v, A)
such thatf’ = b. It follows that f + f’ is a desired extension gf

Assume that = 3. Letwu andw denote the vertices of degree 3 andwvs,
andvs denote the vertices of degree 2 i 3. By Lemma 2.2(jii) and (v), we
may assume that;, vs, vs3, u are all adjacent ta; but by |[E(v)| < 4,w must
not be adjacent te. Thus,G is contractible to & 3, whence Lemma 2.3(iv)
holds.

Therefore, we assume that= 2. Sincer(G) > 2, we must haveE (v)| = 4.
If G has a vertex (say) of degree 2, theb(z) = 0, and so by Lemma 2.2(iii),
there is a functiory’ € F*(G — v, A) such thatf" = b, which meansf + f’ is
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an A-NZF of G extendingf. Therefore G = Wy, whence Lemma 2.3(ii) holds.
This contradicts the assumption th@ais a counterexample. n

Proof of Theorem 1.3. Let M be an edge-cut af with | M| < 4, and letf be a
partial 4-NZF onM . We assume that (iifiv) of Theorem 1.3 do not hold to prove
that f can be extended to a 4-NZF 6f LetG; andG, be two disjoint subgraphs
of G such thati — M = G1 UG,. If one of G; andGs is aK7, then Theorem 1.3
reduces to Lemma 2.3, and is proved. Hence, we assume thathathd G- are
nontrivial.

Fori = 1,2, let N; denote the graph obtained frof by identifying all the
vertices inV (Gs_;) into a single vertex,. Note thatF'(v;) = M. By Lemma 2.3
and by the assumption that (i{jv) of Theorem 1.3 do not hold;, can be extended
to a4-NZFf; on N;, fori = 1,2. Sincefi(e) = f2(e) = f(e) foranye € M, and
sincesupp(f1) N supp(f2) = M, the functionf; + fo — f is a 4-NZF ofG, which
extendsf. n

3. PROOF OF THEOREM 1.5

Throughout this section (with the exception of Lemma 34L}Jenotes an abelian
group of order 4 andl’ denotes a subgroup dfwith |A’| = 2. We start with some

easy observations, stated in Lemma 3.1 and Lemma 3.2 below, whose proofs are
outlined or omitted.

Lemma 3.1. Let H be a nontrivial connected graph and ldt be an abelian
group with|A| > 2. Then for any functionf € F*(G, A), > ,cv () 0.f(v) = 0.

Proof. Inthe sum

>, 9f)= Y] { > fle)- Z()f(e)},

veV(H) veV(H) \ecET(v) ecE—

for each edge € E(G), f(e) appears exactly once with a plus sign and exactly
once with a negative sign and so this sum is zero. n

Lemma 3.2. LetA be an abelian group of orde¥and letA’ be a subgroup oft
with |A’| = 2. Let G be a nontrivial connected grapfThen each of the following
holds

() Foranya,a’ € A — A’, botha + o’ anda — o’ are in A'.

(i) If b€ Z(G, A), then|b=1(A — A")| is even
Lemma 3.3. Let H be a nontrivial connected graph and let € Z(H, A) be

such thab; ' (A — A’) = O(H). Then there is a functiofiy € F*(H, A) such that
df1 = b1.

Proof. Thelemmais trivial if E(H)| = 1. We shall argue by contradiction and
assume thall is a counterexample willig(H )| minimized. LetX = b, '(A—A').
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Casel. H has a cut vertex (say).

Then H has nontrivial connected subgraphs and H» such thatE(Hy) N
E(H2) = 0,E(H,) U E(Hy) = E(H) andV (H;) NV (Hy) = {v}. For each
i = 1,2, definec;: V(H;) — A as follows:

' . bl(z) if z € V(HZ) - {U}
cilz) = { S wevi, o biw) i z=wv. @)

Sincehy € Z(G, A), X cv(m, ¢i(2) = Xoevn bi(2) = 0,andsae; € Z(H;, A).
Let d;(v) denote the degree ofin H;, and assume, without loss of generality, that

if d(v) = d1(v) + dz2(v) is odd (thatisv € X), thend;(v)isodd  (3)

Note that ifv € X = O(H ), thend; (v) anddx(v) must have the same parity.

If v € X, then by (3)O(H;) = X NV (Hy). Sincec; € Z(Hy, A),|c (A -
A" is even by Lemma 3.2(ii). It follows that € ¢; (A — A') = X NV (H;) =
O(H;). By the minimality ofH, there is a functiog; € F*(H;, A) withdg; = ¢;.
Note that by (3)d2(v) is even, and so by Lemma 3.2(ii) and ByN V(H;) =
O(Hy),c; /(A — A = (X — {v}) N V(Hs) = O(H,). By the minimality of
H, there is a functiory; € F*(H;, A) with 991 = ¢;. Note that by (3)d2(v)
is even, and so by Lemma 3.2(ii) and ByN V(H;) = O(H;),c; (A — A') =
(X — {v}) N V(H2) = O(Hs). By the minimality of H, there is a function
go € F*(HQ,A) with dgs = co. Let fi = g1 + go. Clearlyafl(z) = bl(z) if
z #v. Atwv,

8f1(1}) = (’U) -+ CQ(U) = Z b1 ) Z bl(w)

weV (Hy) weV (Ha)

= + Z b1 —bl ) 4)

weV (H)

Thereforeg f1 = b1, as desired.

Assume then botli; (v) andds(v) are even. Then for eache {1,2},O(H;) =
O(H) NV (H;); and so by Lemma 3.2(ii); (v) € A’. Thereforeg; (A — A') =
X NV (H;) = O(H;). By the minimality ofH, there is a function; € F*(H;, A)
with dg; = ¢;, for eachi € {1,2}. Define f; = g1 + g2 as before. Then (4) holds
atv and sod f; = b;.

Now assume that bot (v) anddz(v) are odd. Then, since¢ O(H), for both
i=1andi =2,|0O(H)NV(H;)|is odd, and so by Lemma 3.2(ii};(v) € A— A’
Thus,c; '(A— A") = (X NV (H;))U{v} = O(H;). Therefore, by the minimality
of H, there is a function; € F*(H;, A) with dg; = ¢;, for eachi € {1,2}. Define
f1 = g1 + g2 as before. Then (4) holds atand sod f; = b;.

This precludes Case 1.

Case2. H has no cut vertices

Picke = wv € E(H) and assume thatis directed fromu to v. Choose an
elementa € A — A’ in the following way: ifu,v € V(H) — O(H) or if u,v €
O(H), thena is any elementimd — A’, and ifu € O(H) andv € V(H) — O(H),
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thena = b1 (u). Note that wheni, v € O(H), bothb; (u) andb; (v) are inA — A’,
and so by Lemma 3.2(ifi (u) — a,b1(v) + a € A’. In the same way, ifi,v €
V(H) — O(H), bothby (u) andb; (v) are inA’, and sty (u) — a, b1 (v) +a € A —
A'. Define afunctionf.: {e} — {a}, andlethy = by — df. € Z(H —e, A). Note
thatO(H —e) = (O(H) U {u,v}) — (O(H) N {u,v}) = by ' (A — A"), and so, by
the minimality of H, there is a functiorf, € F*(H — e, A) such thad fo = bs.
Let f1 = fo + fo. Thendf, = 9f. + 0fs = dfe + bo = by. This precludes
Case 2.

Therefore, in any case, a functigh € F*(H, A) can be found wittd f; = by,
contrary to the assumption that is a counterexample. This proves the lemnrga.

Proof of Theorem 1.5. Let G be a collapsible grapi be an abelian group of
order 4 and letd’ be a subgroup oft with |A’'| = 2. Letb € Z(G, A). We shall
showthatthereisafunctighe F*(G, A)suchthadf = b. LetX = b1 (A-A4’).
Note that agA| = 4 and|A’| = 2, |X| is even.

SinceG is collapsible(= has a spanning connected subgraphith O(H) = X.
Let fo € F*(E(G) — E(H),A’) and lethy = 0f>. By Lemma 3.1p; =b—bs €
Z(G,A) = Z(H, A). SinceA’ is a subgroup, and sinég € Z(G, A"),b; (A —
A’y = b71(A — A’). By Lemma 3.3, there is a functiof € F*(H, A) such that
Ofi = bi. Letf = fi + fao. Sincesupp(fi) N supp(f2) = E(H) N (E(G) —
E(H)) = 0 and supp(fi) U supp(fz) = E(G),f € F*(G,A). Alsodf =
0f1 + dfs = b1 + by = b, and so the theorem is established. n
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