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. Abstract

Let S be a set and let M‘.M’,---,M" be k matroids on § with rank functions
L2+, p¥, respectively. Let B' be the collection of bases of M, (1 <i<k). In this

note we show that there is a k-tuple (A4, Aq, - - -, Ay) with A; € B' such that each s € S
lics in at least t of the A;'s if and only if for every X C S,

k
Nx1< Y plx);

i=1

and that there is a k-tuple (A1, Ay, -+, Ag) with A; € B' such that cach s € S lics in
at most ¢ of the Ay’ if and only if for every X C S,

HS - X| > le"(S) - p'(X)].

1. Introduction

We consider loopless matroids on finite nonempty sets. See [7} for undefined terms. The
set of all positive integers will be denoted by N. Let M be a loopless matroid on S with
rank function p. The family of bases of M is denoted by B(M), or just B. The family of
independent sets of M is denoted by Z(M). For T C S, the closure of T in M is denoted
by o(T'). A subset T C S is spanning in M if o(T) = S. The family of all spanning subsets
of M is denoted by S(M).

Let S be aset and let Fx = (Fy, Fa,- -+, Fi) be a k-tuple each of whose components is a
family of subsets of S. For each t € N, an (F F. t)-covering (respectively, an (F £, t)-packing)
of Sis a k-tuple A = (A1, Ag,---, A}), with A, € F; foralli € {1,2,--- Kk}, such that every
8 € S is in at least (respectively, at most) ¢ of the A;’s. “
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Edmonds has the following theorem whose

Williams ([4], [5]) and by Tutte [6).

Theorem 1.1 (Edmonds [3]) Let. M be a matroid on S with rank function p. Let B

denote the familv of bases of A and let Fp = (B,B,---,B) be a k-tuple. Each of the
following holds:

(1) M has a (Fg.1)-covering if and only if for each subset X c S,

graphical versions are proved by Nash-

|X| < kp(X).
(ii) M has a (Fp, 1)-packing if and onlyv if for each subset X cS

1S~ X| 2 k[o(S) - p(X)].

In this note, we shall extend this theorem.

2. Main results

Let Al be a matroid on S with rank function p. Two elements e}, e; € S are parallel if
r({e1.€2}) = ple1) = p(ez). Fix an element ¢ € S and let ¢’ be an element not in S. Define

I'=I(MU{IuU{c}|egl, and TU {e} € Z(M)}.

Then it is routine to check that I is the family of independent sets of a matroid M’ on
SU {€'}. Note that M’|S = M and ¢ and ¢’ are parallel elements in M’. We say that e is

replaced by a set of parallel elements {e.¢'}. Let t € N. For eache € S, we replace e by a
set of parallel elements E(e) = {e), ey, - - - ,€t} such that

E(c)NE(c') = 0, whenever e # ¢'. (1)

Denote the resulting matroid by A, and call it the i-parallel extension of M. Let

S¢ = U E(e)

ecS

Then Afy is a matroid on S;. The family of bases of M, is denoted by B; and the rank
function of Af; is denoted by p,. For every subset Y C S;, there is a minimal subset X € §

such that
Y C | Ele). (2)
ecX :

Thus by (2) and by the minimality of X, we have

mn(Y) = p(X). (3)
In particular, we have
p(Se) = p(S). (4)

Theorem 2.1 Let S be a finite nonempty set and let M, M2, ... M* be k matroids on
the same set § with rank functions p',p?,---,p*. Let the family of bases of M* be B,
(1 <i<k) Let Fg = (B',B?% ... B*) be a k-tuple. Then for any t € N, each of the
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following holds:
(i) There is a (Fpg, t)-covering of S if and only if for every subset X C §,

k : -
HX] < 3 A (X). (5)

i=1

(ii) There is a (Fpg,t)-packing of S if and only if for every subset X C S,

k
t1S - X| 2 ) _[6'(S) = A (X)) (6)
=1

Proof: For each i € {1,2,---,k}, let M; denote the t-parallel extension of M i and let
p} denote the rank function of M. Let

"={I|I=1'UI*u---UI* I' e I(M}), L <i < k}. (M

It is known ([7], page 121) that I” is the set of independent sets of a matroid on S, called
the union of M}, M2, ..., M* and denoted by

k
M°=\/ M].
i=1
The rank function of M° will be given by ([7], page 121)

k
. pP°(Y) = 7mc_"1} {g p(T)+1Y — Tl} , forallY C S;. (8)

We shall show that the following are equivalent:

(a) There is a (Fp, t)-covering of S.

(b) Every subset of S; is independent in M°.

(c) For any Y C 8§, Y| < =K, pl(V).

(d) For any X C S, t|X] < Tk, '(X).

(a) = (b). Let B = (B!, B2,-.-, BF) be a (Fg, t)-covering of S. Thus, each B' is a base
of M* (1 <i < k), and each ¢ € S is an element in at least ¢ components of B. Therefore,
there is a k-tuple A = (A}, A2,.-. ,A") whose components satisfy A' C B, (1 < i < k),
such that each e € S lies in exactly ¢ components of A. Define By = (B}, B?,---,BF) to
be a k-tuple obtained from A by replacing, for each e € S, each of the t occurrences of e
in the components of A by # distinct elements of E(e) in the corresponding components of
B, so that each e; € E(e) (1 < i < k) occurs in just one components of B,. Since each
B € T(M?), we have A € Z(M") also, and so B} € I(M;). Hence by (8),

k
\UBieT"

i=1

But since each e € S lies in exactly  components of A, it follows from the definition of B¢
that S; = UX_, B!, and so S; € I”. Thus (b) follows.

(b) = (a). Assume that M° = vE_ M} is a matroid on S; such that every subset of
S, is independent in M?, and so S; € I". Thus by (8), S; can be written by

k
Se = U B:’ (9)
i=1
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where By € I(M{). For cach i € {1,2,--- vk}, define a subset A C S by
e€ A < E(e)Nn Bi #0.

Since B € I(M{), A' is independent in M*. Since |E(e)| =t for all e € S, we have e € A’
for at least t values of i and so by (9) and by the definition of St, each e € S lies in at
least t components of the k-tuple A = (4!, A2,..., A%). Since each component A of A is
independent in M®, A" is contained in a base B' of M' and so B = (B,B?,... B
(Fg.t)-covering of S in B. This proves (a).

(b) <= (c). Since (b) holds if and only if p°(S,) = |Stl, it follows by (8) and (9) that
(b) holds if and only if (c) holds.

(c) <= (d). For each X C S, define

Y(X) = |J E(e).

ec X

Yisa

Thus [Y(X)| = #|X| and so by (3), (c) implies (d). Suppose that (d) holds. For each Y C §;,

one can find a minimal subset X C S such that

Y C U E(e).

ecX
Then by Y| < #]X], by (d) and by (3), we have

k k
YT<tX] <Y pl(X) =3 pl(y),
i=1

i=1
which proves (c).
By the equivalence of (a) <= (b) <= (c) <= (d), we established (i) of Theorem 2.1.
To prove (ii) of Theorem 2.1, we shall show that the following are equivalent:
(a’) There is a (Fp, t)-packing of S.
(b") The matroid M° has rank Y-%_, pi(S).
(') For any Y C 8, |S: = Y| > TK,[pi(S) - pi(Y)).
(d') For any X C S, #|S - X| > TF_[6(S) - p'(X)).

(a’) == (b"). Suppose that B = (B!, B?,..., BYisa (F g, t)-packing of S. Then each
€ € S is in at most ¢ of the B's. Recall that

Sg = U E(C),
ecS
where E(e) = {e},eg,---,e}. For eachi € {1,2,---,k}, define a subset Bi as follows:

B} = U{c,i € E(e) | e € B'}.

Thus B} N B} = 0. whenever i # j. By (3), that Bj is base in M; follows from that B is a
base in A, and so

() = |Bi| = |B'| = p(S). (10)
By (8) and (11). UX_, B is a base of M® and so

p°(St) =

k .
U B
=1

k
=3 r'(S).
i=1
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Thus (b’) must hold.

(b’) = (a'). By (b") and by (8), we can find disjoint subsets B; of S, (1 < i < k),
such that B is a base in M. For each i € {1,2,---,k}, define

B' = {c€ S| E(e)n B #0}.

Since Bt is independent in M, for every e € S, and for everyi € {1,2,---,k}, |E(e)nBj}| <
1, and so by the fact that Bj is a base in M{ again, and by (3), B' is base in M". Since the
Bi's are disjoint, every e € S is in at most ¢ components of B = (B!, B?, ... B*), and so §
has a (Fp, t)-packing. :

(b’) <= (c'). This equivalence follows from (8) and (10).

(c’) <= (d’). The proof of this equivalence is similar to that of (c) <= (d) above.

By the equivalence of (a') < (b’) <= (c’) «= (d'), we established (ii) of Theorem
21. 0

3. Corollaries

Let M be a matroid on S and let F denote a family of subsets of S, and let Fr =
(Fy F,--+,F). In (1], a (Fx,t)-covering is called a t-covering of S in F, and an (F £, t)-
packing is called a t-packing of S in F. The following is an extension of Theorem 1.1.

Corollary 3.1 ([1] and [2]) Let A be a matroid on S with rank function p, and let B

denote the family of bases of M. Let Fg = (B, B,-- -, B) be a k-tuple. Each of the following
holds:

(i) M has a (F g, t)-covering if and only if for every subset X € S,
HX| < kp(X).
(ii) M has a (Fp,t)-packing if and only if for every X C S,
| 1S — X| 2 klo(S) - p(X)].

Proof: Apply Theorem 2.1 to the case when M! = M2 =... = MF = Af. O
Corollary 3.2 Let M be a matroid on S. Let ny,ng,---,n; be natural numbers such
that n; < p(S), (1 < i < k). Then each of the following holds:

(i) There is a t-covering A = (Ay, Ay,---, Ax) of S in I(M) such that for each i €
{1,2,---,k}, |Ai| € n; if and only if for every subset X C §

k
HX| < Y min{ni, p(X)}.

i=1

(ii) There is a t-packing A = (A;, Ay,---, A) of S in I(M) such that for each i €
{1,2,---,k}, |Ai] = n; if and only if for every X C S,

k
HS = X| 2 3 [ns — min{ny, p(X)}].

i=]

Proof: Apply Theorem 2.1 to the case when each M is the truncation of M to n;. O

Let M be a matroid on S and let k be an integer with p(S) < k < |S|. Then the family
of all subsets A € S(M) with [A| = k is a the family of bases of a matroid M® on §, called
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the elongation of M to k. (see [7), page 60). Let p and p*) denote the rank funk functions
of A and M®) respectively. Then for any X C S, we have

PEI(X) = p(X) + min{|X| - p(X), k - p(8)}. (11)

In fact, let X' C X be a independent subset in M with p(X)=|X'|,and let X" C § - X
be an independent set in M such that X’U X" is a base in M. Hence p(S) = [ X'| +|X"|. If
|X]—=n(X) > k~p(S), then one can choose k — p(X) elements from X — X' to form a subset
Y. Since XU X" is a base of M, X' UX"UY ¢ S(M), and so by the definition of M%),
X'UX"UY is a base of M*). Therefore, p*)(X) = p(X)+k—p(S). If k—p(S) > |X|-p(X),
then one can choose | X| — p(X) elements from X — X’ to form a subset Y, and so X' Uy’
is independent in M*). Thus (11) holds also. This proves (11)

Corollary 3.3 Let M be a matroid on S. Let n1,7n2, -+, n; be natural numbers such
that |S| > n; > p(S), (1<i< k). Then each of the following holds:

(i) There is a t-covering A = (A1, Az, -+, Ax) of S in S(M) such that for each i €
{L.2.--- .k}, |Ai] > n; if and only if for every subset X C §

k
1X1 < Yolp(X) = mingm: — p(S), 1X] - p(X)}).

i=1

(ii) There is a t-packing A = (A1, Ag,---,Ap) of S in S(M) such that for each i €
{1.2.--- k}, |Ail = n; if and only if for every X C S,

-

k
1S~ X| 2 Y- [ni - p(X) — min{n; — p(S), 1X| - p(X)}).
i=1 .

Proof: Apply Theorem 2.1 to the case when each M is the elongation of M to n;. O
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