Generalized matroid packings and coverings

Zhi-Hong Chen
Department of Mathematics and Computer Sciences
Butler University, Indianapolis, IN 46208
E-MAIL: CHEN@ruth.butler.edu

Ying-Qiang Kuang
School of Business and Management
South China University of Technology, Guangzhow, P. R. China

Hong-Jian Lai
Department of Mathematics
West Virginia University, Morgantown, WV 26506
E-MAIL: hjlai@math.wvu.edu

Abstract

Let S be a set and let M^1, M^2, \dots, M^k be k matroids on S with rank functions $\rho^1, \rho^2, \dots, \rho^k$, respectively. Let \mathcal{B}^i be the collection of bases of M^i , $(1 \le i \le k)$. In this note we show that there is a k-tuple (A_1, A_2, \dots, A_k) with $A_i \in \mathcal{B}^i$ such that each $s \in S$ lies in at least t of the A_i 's if and only if for every $X \subseteq S$,

$$t|X| \le \sum_{i=1}^k \rho^i(X);$$

and that there is a k-tuple (A_1, A_2, \dots, A_k) with $A_i \in \mathcal{B}^i$ such that each $s \in S$ lies in at most t of the A_i 's if and only if for every $X \subseteq S$,

$$t|S-X| \ge \sum_{i=1}^k [\rho^i(S) - \rho^i(X)].$$

1. Introduction

We consider loopless matroids on finite nonempty sets. See [7] for undefined terms. The set of all positive integers will be denoted by N. Let M be a loopless matroid on S with rank function ρ . The family of bases of M is denoted by $\mathcal{B}(M)$, or just \mathcal{B} . The family of independent sets of M is denoted by $\mathcal{I}(M)$. For $T \subseteq S$, the closure of T in M is denoted by $\sigma(T)$. A subset $T \subseteq S$ is spanning in M if $\sigma(T) = S$. The family of all spanning subsets of M is denoted by $\mathcal{S}(M)$.

Let S be a set and let $\mathbf{F}_{\mathcal{F}} = \langle \mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_k \rangle$ be a k-tuple each of whose components is a family of subsets of S. For each $t \in \mathbb{N}$, an $(\mathbf{F}_{\mathcal{F}}, t)$ -covering (respectively, an $(\mathbf{F}_{\mathcal{F}}, t)$ -packing) of S is a k-tuple $\mathbf{A} = \langle A_1, A_2, \cdots, A_k \rangle$, with $A_i \in \mathcal{F}_i$ for all $i \in \{1, 2, \cdots, k\}$, such that every $s \in S$ is in at least (respectively, at most) t of the A_i 's.

Edmonds has the following theorem whose graphical versions are proved by Nash-Williams ([4], [5]) and by Tutte [6].

Theorem 1.1 (Edmonds [3]) Let M be a matroid on S with rank function ρ . Let \mathcal{B} denote the family of bases of M and let $\mathbf{F}_{\mathcal{B}} = \langle \mathcal{B}, \mathcal{B}, \dots, \mathcal{B} \rangle$ be a k-tuple. Each of the following holds:

(i) M has a $(\mathbf{F}_{\mathcal{B}}, 1)$ -covering if and only if for each subset $X \subseteq S$,

$$|X| \leq k\rho(X)$$
.

(ii) M has a $(\mathbf{F}_{\mathcal{B}}, 1)$ -packing if and only if for each subset $X \subseteq S$

$$|S - X| \ge k[\rho(S) - \rho(X)].$$

In this note, we shall extend this theorem.

2. Main results

Let M be a matroid on S with rank function ρ . Two elements $e_1, e_2 \in S$ are parallel if $\rho(\{e_1, e_2\}) = \rho(e_1) = \rho(e_2)$. Fix an element $e \in S$ and let e' be an element not in S. Define

$$\mathcal{I}' = \mathcal{I}(M) \cup \{I \cup \{c'\} \mid e \not\in I, \text{ and } I \cup \{e\} \in \mathcal{I}(M)\}.$$

Then it is routine to check that \mathcal{I}' is the family of independent sets of a matroid M' on $S \cup \{e'\}$. Note that M'|S = M and e and e' are parallel elements in M'. We say that e is replaced by a set of parallel elements $\{e, e'\}$. Let $t \in \mathbb{N}$. For each $e \in S$, we replace e by a set of parallel elements $E(e) = \{e_1, e_2, \dots, e_t\}$ such that

$$E(c) \cap E(c') = \emptyset$$
, whenever $e \neq e'$. (1)

Denote the resulting matroid by M_t and call it the <u>t</u>-parallel extension of M. Let

$$S_t = \bigcup_{e \in S} E(e).$$

Then M_t is a matroid on S_t . The family of bases of M_t is denoted by \mathcal{B}_t and the rank function of M_t is denoted by ρ_t . For every subset $Y \subseteq S_t$, there is a minimal subset $X \in S$ such that

$$Y\subseteq \bigcup_{e\in X}E(e). \tag{2}$$

Thus by (2) and by the minimality of X, we have

$$\rho_t(Y) = \rho(X). \tag{3}$$

In particular, we have

$$\rho_t(S_t) = \rho(S). \tag{4}$$

Theorem 2.1 Let S be a finite nonempty set and let M^1, M^2, \dots, M^k be k matroids on the same set S with rank functions $\rho^1, \rho^2, \dots, \rho^k$. Let the family of bases of M^i be \mathcal{B}^i , $(1 \leq i \leq k)$. Let $\mathbf{F}_{\mathcal{B}} = \langle \mathcal{B}^1, \mathcal{B}^2, \dots, \mathcal{B}^k \rangle$ be a k-tuple. Then for any $t \in \mathbb{N}$, each of the

following holds:

(i) There is a (\mathbf{F}_{R}, t) -covering of S if and only if for every subset $X \subseteq S$,

$$t|X| \le \sum_{i=1}^k \rho^i(X). \tag{5}$$

(ii) There is a $(\mathbf{F}_{\mathcal{B}}, t)$ -packing of S if and only if for every subset $X \subseteq S$,

$$t|S - X| \ge \sum_{i=1}^{k} [\rho^{i}(S) - \rho^{i}(X)].$$
 (6)

<u>Proof</u>: For each $i \in \{1, 2, \dots, k\}$, let M_t^i denote the t-parallel extension of M^i , and let ρ_t^i denote the rank function of M_t^i . Let

$$\mathcal{I}'' = \{ I \mid I = I^1 \cup I^2 \cup \dots \cup I^k, \ I^i \in \mathcal{I}(M_t^i), \ 1 \le i \le k \}. \tag{7}$$

It is known ([7], page 121) that \mathcal{I}'' is the set of independent sets of a matroid on S_t , called the union of M^1, M^2, \cdots, M^k and denoted by

$$M^o = \bigvee_{i=1}^k M_t^i.$$

The rank function of M^o will be given by ([7], page 121)

$$\rho^{o}(Y) = \min_{T \subseteq Y} \left\{ \sum_{i=1}^{k} \rho_{t}^{i}(T) + |Y - T| \right\}, \text{ for all } Y \subseteq S_{t}.$$
 (8)

We shall show that the following are equivalent:

- (a) There is a $(\mathbf{F}_{\mathcal{B}}, t)$ -covering of S.
- (b) Every subset of S_t is independent in M^o .
- (c) For any $Y \subseteq S_t$, $|Y| \leq \sum_{i=1}^k \rho_t^i(Y)$.
- (d) For any $X \subseteq S$, $t|X| \le \sum_{i=1}^k \rho^i(X)$. (a) \Longrightarrow (b). Let $\mathbf{B} = \langle B^1, B^2, \dots, B^k \rangle$ be a $(\mathbf{F}_{\mathcal{B}}, t)$ -covering of S. Thus, each B^i is a base of M^i $(1 \le i \le k)$, and each $c \in S$ is an element in at least t components of B. Therefore, there is a k-tuple $A = (A^1, A^2, \dots, A^k)$ whose components satisfy $A^i \subseteq B^i$, $(1 \le i \le k)$, such that each $e \in S$ lies in exactly t components of A. Define $\mathbf{B}_t = \langle B_t^1, B_t^2, \dots, B_t^k \rangle$ to be a k-tuple obtained from A by replacing, for each $e \in S$, each of the t occurrences of e in the components of A by t distinct elements of E(e) in the corresponding components of \mathbf{B}_{t} , so that each $e_{i} \in E(e)$ $(1 \le i \le k)$ occurs in just one components of \mathbf{B}_{t} . Since each $B^i \in \mathcal{I}(M^i)$, we have $A^i \in \mathcal{I}(M^i)$ also, and so $B^i_t \in \mathcal{I}(M^i_t)$. Hence by (8),

$$\bigcup_{i=1}^k B_t^i \in \mathcal{I}''.$$

But since each $e \in S$ lies in exactly t components of A, it follows from the definition of B_t that $S_t = \bigcup_{i=1}^k B_t^i$, and so $S_t \in \mathcal{I}''$. Thus (b) follows.

(b) \Longrightarrow (a). Assume that $M^o = \bigvee_{i=1}^k M_t^i$ is a matroid on S_t such that every subset of S_t is independent in M^o , and so $S_t \in \mathcal{I}''$. Thus by (8), S_t can be written by

$$S_t = \bigcup_{i=1}^k B_t^i, \tag{9}$$

where $B_t^i \in \mathcal{I}(M_t^i)$. For each $i \in \{1, 2, \dots, k\}$, define a subset $A^i \subseteq S$ by

$$e \in A^i \iff E(e) \cap B^i \neq \emptyset.$$

Since $B_t^i \in \mathcal{I}(M_t^i)$, A^i is independent in M^i . Since |E(e)| = t for all $e \in S$, we have $e \in A^i$ for at least t values of i and so by (9) and by the definition of S_t , each $e \in S$ lies in at least t components of the k-tuple $A = \langle A^1, A^2, \dots, A^k \rangle$. Since each component A^i of A is independent in M^i , A^i is contained in a base B^i of M^i and so $\mathbf{B} = (B^1, B^2, \dots, B^k)$ is a $(\mathbf{F}_{\mathcal{B}}, t)$ -covering of S in \mathcal{B} . This proves (a).

- (b) \iff (c). Since (b) holds if and only if $\rho^o(S_t) = |S_t|$, it follows by (8) and (9) that (b) holds if and only if (c) holds.
 - (c) \iff (d). For each $X \subseteq S$, define

$$Y(X) = \bigcup_{e \in X} E(e).$$

Thus |Y(X)| = t|X| and so by (3), (c) implies (d). Suppose that (d) holds. For each $Y \subseteq S_t$, one can find a minimal subset $X \subseteq S$ such that

$$Y\subseteq\bigcup_{e\in X}E(e).$$

Then by $|Y| \le t|X|$, by (d) and by (3), we have

$$|Y| \le t|X| \le \sum_{i=1}^k \rho^i(X) = \sum_{i=1}^k \rho^i_t(Y),$$

which proves (c).

By the equivalence of (a) \iff (b) \iff (c) \iff (d), we established (i) of Theorem 2.1. To prove (ii) of Theorem 2.1, we shall show that the following are equivalent:

- (a') There is a $(\mathbf{F}_{\mathcal{B}}, t)$ -packing of S.
- (b') The matroid M^o has rank $\sum_{i=1}^k \rho^i(S)$. (c') For any $Y \subseteq S_t$, $|S_t Y| \ge \sum_{i=1}^k [\rho_t^i(S) \rho_t^i(Y)]$.
- (d') For any $X \subseteq S$, $t|S-X| \ge \sum_{i=1}^k [\rho^i(S) \rho^i(X)]$. (a') \Longrightarrow (b'). Suppose that $\mathbf{B} = \langle B^1, B^2, \dots, B^k \rangle$ is a $(\mathbf{F}_{\mathcal{B}}, t)$ -packing of S. Then each $c \in S$ is in at most t of the B^{i} 's. Recall that

$$S_t = \bigcup_{e \in S} E(e),$$

where $E(e) = \{e_1, e_2, \dots, e_t\}$. For each $i \in \{1, 2, \dots, k\}$, define a subset B_t^i as follows:

$$B_t^i = \bigcup \{e_i \in E(e) \mid e \in B^i\}.$$

Thus $B_t^i \cap B_t^j = \emptyset$, whenever $i \neq j$. By (3), that B_t^i is base in M_t^i follows from that B^i is a base in M^i , and so

$$\rho^{i}(S_{t}) = |B_{t}^{i}| = |B^{i}| = \rho(S). \tag{10}$$

By (8) and (11), $\bigcup_{i=1}^k B_t^i$ is a base of M^o and so

$$\rho^{o}(S_t) = \left| \bigcup_{i=1}^k B_t^i \right| = \sum_{i=1}^k \rho^i(S).$$

Thus (b') must hold.

(b') \Longrightarrow (a'). By (b') and by (8), we can find disjoint subsets B_t^i of S_t , $(1 \le i \le k)$, such that B_t^i is a base in M_t^i . For each $i \in \{1, 2, \dots, k\}$, define

$$B^{i} = \{ e \in S \mid E(e) \cap B_{t}^{i} \neq \emptyset \}.$$

Since B_t^i is independent in M_t^i , for every $e \in S$, and for every $i \in \{1, 2, \dots, k\}$, $|E(e) \cap B_t^i| \le 1$, and so by the fact that B_t^i is a base in M_t^i again, and by (3), B^i is base in M^i . Since the B_t^i 's are disjoint, every $e \in S$ is in at most t components of $\mathbf{B} = \langle B^1, B^2, \dots, B^k \rangle$, and so S has a (\mathbf{F}_B, t) -packing.

(b') ⇐⇒ (c'). This equivalence follows from (8) and (10).

 $(c') \iff (d')$. The proof of this equivalence is similar to that of $(c) \iff (d)$ above.

By the equivalence of (a') \iff (b') \iff (c') \iff (d'), we established (ii) of Theorem 2.1. \square

3. Corollaries

Let M be a matroid on S and let \mathcal{F} denote a family of subsets of S, and let $\mathbf{F}_{\mathcal{F}} = \langle \mathcal{F}, \mathcal{F}, \dots, \mathcal{F} \rangle$. In [1], a $(\mathbf{F}_{\mathcal{F}}, t)$ -covering is called a <u>t-covering</u> of S in \mathcal{F} , and an $(\mathbf{F}_{\mathcal{F}}, t)$ -packing is called a <u>t-packing</u> of S in \mathcal{F} . The following is an extension of Theorem 1.1.

Corollary 3.1 ([1] and [2]) Let M be a matroid on S with rank function ρ , and let \mathcal{B} denote the family of bases of M. Let $\mathbf{F}_{\mathcal{B}} = \langle \mathcal{B}, \mathcal{B}, \dots, \mathcal{B} \rangle$ be a k-tuple. Each of the following holds:

(i) M has a $(\mathbf{F}_{\mathcal{B}}, t)$ -covering if and only if for every subset $X \in S$,

$$t|X| \leq k\rho(X)$$
.

(ii) M has a $(\mathbf{F}_{\mathcal{B}}, t)$ -packing if and only if for every $X \subseteq S$,

$$t|S-X| \ge k[\rho(S) - \rho(X)].$$

<u>Proof:</u> Apply Theorem 2.1 to the case when $M^1 = M^2 = \cdots = M^k = M$. \square Corollary 3.2 Let M be a matroid on S. Let n_1, n_2, \cdots, n_k be natural numbers such that $n_i \leq \rho(S)$, $(1 \leq i \leq k)$. Then each of the following holds:

(i) There is a t-covering $A = \langle A_1, A_2, \dots, A_k \rangle$ of S in $\mathcal{I}(M)$ such that for each $i \in \{1, 2, \dots, k\}, |A_i| \leq n_i$ if and only if for every subset $X \subseteq S$

$$t|X| \leq \sum_{i=1}^k \min\{n_i, \rho(X)\}.$$

(ii) There is a t-packing $A = \langle A_1, A_2, \dots, A_k \rangle$ of S in $\mathcal{I}(M)$ such that for each $i \in \{1, 2, \dots, k\}$, $|A_i| = n_i$ if and only if for every $X \subseteq S$,

$$t|S-X| \ge \sum_{i=1}^{k} [n_i - \min\{n_i, \rho(X)\}].$$

<u>Proof:</u> Apply Theorem 2.1 to the case when each M^i is the truncation of M to n_i . \square Let M be a matroid on S and let k be an integer with $\rho(S) \le k \le |S|$. Then the family of all subsets $A \in S(M)$ with |A| = k is a the family of bases of a matroid $M^{(k)}$ on S, called the elongation of M to k. (see [7], page 60). Let ρ and $\rho^{(k)}$ denote the rank funk functions of M and $M^{(k)}$, respectively. Then for any $X \subseteq S$, we have

$$\rho^{(k)}(X) = \rho(X) + \min\{|X| - \rho(X), k - \rho(S)\}. \tag{11}$$

In fact, let $X' \subseteq X$ be a independent subset in M with $\rho(X) = |X'|$, and let $X'' \subseteq S - X$ be an independent set in M such that $X' \cup X''$ is a base in M. Hence $\rho(S) = |X'| + |X''|$. If $|X| - \rho(X) \ge k - \rho(S)$, then one can choose $k - \rho(X)$ elements from X - X' to form a subset Y. Since $X' \cup X''$ is a base of M, $X' \cup X'' \cup Y \in S(M)$, and so by the definition of $M^{(k)}$, $X' \cup X'' \cup Y'$ is a base of $M^{(k)}$. Therefore, $\rho^{(k)}(X) = \rho(X) + k - \rho(S)$. If $k - \rho(S) \ge |X| - \rho(X)$, then one can choose $|X| - \rho(X)$ elements from X - X' to form a subset Y', and so $X' \cup Y'$ is independent in $M^{(k)}$. Thus (11) holds also. This proves (11).

Corollary 3.3 Let M be a matroid on S. Let n_1, n_2, \dots, n_k be natural numbers such that $|S| \ge n_i \ge \rho(S)$, $(1 \le i \le k)$. Then each of the following holds:

(i) There is a t-covering $\mathbf{A} = \langle A_1, A_2, \dots, A_k \rangle$ of S in S(M) such that for each $i \in \{1, 2, \dots, k\}, |A_i| \geq n_i$ if and only if for every subset $X \subseteq S$

$$t|X| \leq \sum_{i=1}^{k} [\rho(X) - \min\{n_i - \rho(S), |X| - \rho(X)\}].$$

(ii) There is a t-packing $A = \langle A_1, A_2, \dots, A_k \rangle$ of S in S(M) such that for each $i \in \{1, 2, \dots, k\}$, $|A_i| = n_i$ if and only if for every $X \subseteq S$,

$$|t|S - X| \ge \sum_{i=1}^{k} [n_i - \rho(X) - \min\{n_i - \rho(S), |X| - \rho(X)\}].$$

<u>Proof</u>: Apply Theorem 2.1 to the case when each M^i is the elongation of M to n_i . \square

References

- P. A. Catlin, J. W. Grossman, A. M. Hobbs and H.-J. Lai, Fractional arboricity, strength, and principal partitions in graphs and matroids, Discrete Appl. Math., 40 (1992), 285 - 302.
- [2] W. H. Cunningham, Optimal attack and reinforcement of a network. J. Assoc. Comp. Mach. 32 (1985), 549 - 561.
- [3] J. Edmonds, Lehman's switching games and a theorem of Tutte and Nash-Williams. J. Res. Nat. Bur. Stand. 69B (1965), 73 77.
- [4] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36 (1961), 445 - 450.
- [5] C. St. J. A. Nash-Williams, Decompositions of finite graphs into forests. J. London Math. Soc. 39 (1964), 12 - 13.
- [6] W. T. Tutte, On the problem of decomposing a graph into n connected factors. J. London Math Soc. 36 91961), 221 - 230.
- [7] D. J. A. Welsh, "Matroid Theory", Academic Press, London, New York, 1976.