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ABSTRACT 

A graph G is a (k, /)-graph if for any subgraph H of G, that IV(H)I 2 
I implies that K' (H)  5 k - 1. An edge-maximal (k,  /)-graph G is one 
such that for any e E €(GC), G + e is not a (k, /)-graph. In [F.T. 
Boesch and J. A. M. McHugh, "An Edge Extremal Result for Subco- 
hesion," Journal of Combhatorial Theory B, vol. 38 (19851, pp. 1-71 
a class of edge-maximal graphs was found and used to show best 
possible upper bounds of the size of edge-maximal (k,  /)-graphs. In 
this paper, we investigate the lower bounds of the size of edge- 
maximal (k,  /)-graphs. Let f (n ,  k, /) denote the minimum size of edge- 
maximal (k,  /)-graphs of order n. We shall give a characterization 
of edge-maximal (k,  /)-graphs. This characterization is used to de- 
termine f (n ,  k, I )  and to characterize the edge-maximal (k,  /)-graphs 
with minimum sizes, for all n L I 2  k + 2 P 5. Thus prior results in 
[F.T. Boesch and J.A. M. McHugh, op. cit.; H.-J. Lai, "The Size of 
Strength-Maximal Graphs," Journal of Graph Theory, vol. 14 (1 9901, 
pp. 187-1971 are extended. 0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

We follow the notation of Bondy and Murty [2] and consider simple graphs 
only. For a real number x ,  1x1 denotes the largest integer not bigger than x.  
Let d ( G )  denote the edge-connectivity of G and let G' be the complement 
of G. For convenience, we define K'(KI)  = 0. By H C G we mean that H 
is a subgraph of G. Generalizing a prior result of Mader [4], Boesch and 
McHugh called a graph G, where IV(G)l 2 I > k L 2, a ( k ,  &graph if for 
any H C G, IV(H)I L Z implies that K'(H) 5 k - 1. A (k,Z)-graph G is 
an edge-maximal (k, I)-graph if, for any e E E(G"), G + e has a subgraph 
H with J V ( H ) (  L 1 and K'(H) 1 k. Edge-maximal (k, k + 1)-graphs have 
been studied in [1]-[6], among others. 

Journal of Graph Theory, Vol. 18, No. 3, 227-240 (1 994) 
0 1994 John Wiley & Sons, Inc. CCC 0364-9024/94/030227-14 
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Theorem A (Mader [4]). 
of order n, then 

If G is an edge-maximal (k + 1, k + 2)-graph 

where G is an extremal graph if and only if G has a vertex v of degree k 
such that G - v is also an extrernal graph. I 

Theorem B (Lai [3]). If G is an edge-maximal (k + 1, k + 2)-graph of 
order n,  then 

The bound of Theorem B is also best possible. The extremal graphs for 
Theorem B are characterized in [3] in a way similar to but more complicated 
than those for Theorem A. 

In [l], Boesch and McHugh constructed a class of edge-maximal (k,l)- 
graphs and use them to extend Theorem A to the following: 

Theorem C (Boesch and McHugh [ 13). Let G be a simple graph of order 
n and let n 2 I 2 k. Let  s, r 2 0 be integers such that n = s(1 - 1) + r 
with 0 5 Y < 1 - 1. If G is an edge-maximal (k, 1)-graph, then 

+ (s - 1 + r ) (k  - l ) ,  I - - 2, 
2(k - 1) < I - 1 and r < 2(k I 

s(Z - 1) (1 - 2) 
2 

r ( r  - 1) 
2 '  

+ s(k - 1 )  + 
2(k - 1) < 1 - 1 and r 2 2(k I IE(G)I 5 

r ( r  - 1) 
2 '  

+ s(k - 1 )  + 
IE(G)I 5 

2(k - 1) < 1 - 1 and r 2 2(k I 1 (' - ':' - 2, + (n - 1 + l ) (k  - l ) ,  

2(k - 1) 2 1 - 1 I 
The main result given in Section 2 is to do for Theorem C what Theo- 
rem B does for Theorem A. In Section 3, the structure of edge-maximal 
(k,l)-graphs are discussed, and the proofs of the main results are in 
Section 4. 

Au: correct a5 
edited? 
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2. MAIN RESULT 

Let T ( k ,  I) denote the collection of all edge-maximal ( k ,  1)-graphs and, for 
integers n 2 1 1 k + 1 ,  define 

f ( n ,  k ,  I )  = min{lE(G)J: G E E ( k ,  I )  and IV(G)l = n} 

And define 

S % ( n ,  k ,  I) = {G: G E T ( k ,  Z), IV(G)( = n and (E(G)I = f ( n ,  k ,  1)) .  

Thus Theorem B gives a result on f ( n ,  k + 1 ,  k + 2). In this paper, we 
shall determine f ( n ,  k ,  1)  for all n 2 1 1- k + 2 2 5 ,  and characterize all 
( k ,  Z)-graphs and all graphs in S% (n, k ,  I). For k 2 3, we have 

[ ( I  ’ )  + (n  - Z + l ) ( k  - l ) ,  

Z I n  < 2 k  + 2 ,  I 
(n - l ) ( k  - 1 )  - i & j k 2  2 3 k ,  

Z 5 2 k  + 2 S n ,  
n - 2t k2 - 3k ___ ( n  - 2t + 1 ) ( k  - 1) + t( t  - 1 )  - 

L k i - 1 1  2 ’ 

f ( n ,  k ,  1 )  = 

n 2 1 = 2t 2 2k + 3 ,  I 
1 n I, 

; 1 k2 - 3k 1 2 ’  (n - 2 t ) ( k  - 1 )  + t2 - 

n 2 1 = 2t + 1 2 2k + 3 .  

3. THE STRUCTURES OF EDGE-MAXIMAL (k, /)-GRAPHS 

Let m, k,Z be positive integers. By Theorem B, we shall assume, 
throughout the paper, that 1 2 k + 2. Let T be a tree of order m 2 2 
with V(T) = {u l ,  u2,. . . , u,}. For positive integers rl, r2 , .  . . , r,, define 
T(r-1, r2,. . . , r,; k ,  I )  to be the collection of simple graphs obtained from 
T by replacing each vertex ui by a complete graph Ri = K r i ,  ( 1  5 i 5 m), 
and by replacing each edge uiuj  (say) of T by a set of k - 1 edges with 
one end in Ri and the other end in Rj in such a way that the resulting 
graph is simple. When no confusion arises, we also use T(r1, .  . . , r,; k ,  1 )  
to denote a graph in the collection. We consider the following constraints 
to the parameters Ti’s: 

for each i, ri = 1 or 1 - 1 2 ri 2 k + 1 ;  (1) 
(2) if uiuj E E(T) ,  then ri + rj 2 1 .  
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Let f ( k ,  I) denote the collection of all T(r1, r2, . . . , r,; k ,  I ) ,  (I > k ) ,  such 
that (1) and (2) are satisfied. Thus if G E f ( k , I ) ,  then 

Lemma 1. Let T = v l v 2 . .  . u, be a (vlr v,)-path with m P 2, and let 
G = T(r1, r2 , .  . . , r,; k ,  I) be a graph in f ( k ,  I). Then each of the following 
holds: 

(a) K'(G)  = k - 1 and every edge-cut X with 1x1 = k - 1 consists of 

(b) If e E E(G") is an edge that joins a vertex in R1 to one in R,, then 
all edges from Ri to Ri+l, for some i E {1,2,. . . , m - 1). 

K'(G + e )  = k .  

Proof. It follows directly from the definitions. I 

Note that all edge-maximal ( k ,  I)-graphs constructed in [l] are in T(k, I ) .  
We therefore generalize a result in [l] to the following: 

Corollary 1 ([l]). Every member in f ( k , I )  is in T(k,I). 

Proof. Let G = T(rl ,r2, .  . . , r p ;  k ,  I) E T(k,I). Let e E E(G'). We 
shall show that G + e has a subgraph H with IV(H)I 1 I and K'(H) 1 k .  
Since e E E(G") and since every Ri is a complete graph, e must join some 
Ri to some R j ,  i f j .  Since T is a tree, there is a unique path from the 
vertex representing Ri to that representing Ri. Without loss of generality, 
we may assume that i = 1 and j = m, and that P = v lv2 . .  . v, is that 
path. Thus by (b) of Lemma 1, G has a subgraph H = P(r1, .  . . , r,; k ,  I )  
with the desired conditions. I 

Lemma 2. If IV(G)l L I > k and if G E T(k,I),  then K'(G) = k - 1. 

Proof. Obvious. I 

Lemma 3. 
k - 1 and with GI being a component of G - X .  

Let G E T(k,  I )  and let X be an edge-cut of G with 1x1 = 

(a) If IV(Gl)l 2 1,  then GI E F(k,Z). 
(b) If IV(Gl)( I 1 - 1 and I 2 k + 2, then G 1  is a complete graph; 

moreover, when k 1 3 ,  either IV(G1)l = 1 or IV(G1)l 2 k + 1. 

Proof. If IV(G,)l 2 I ,  then G 1  is not a complete graph. Since G E 
T(k,I ) ,  for any e E E(G;) ,  G + e has a subgraph L with IV(L)I 2 I and 
K'(L) 2 k .  By Lemma 2, L must be a subgraph of G1 and so (a) of Lemma 3 
follows. 
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Now suppose that IV(Gl)l I 1 - 1 .  If GI is not complete, then there 
is an edge e E E(Gf) C E(G‘) and so G + e has no subgraph H with 
IV(H)I 5 I and d ( H )  5 k ,  contrary to the assumption that G E T(k,  1). 
Hence GI must be complete. 

In the following, we shall show that if 1 < IV(Gl)l 5 k, then k = 2. 
Assume that rl is an integer so that G1 = Krl and suppose that 

Claim. There is a vertex u E V(GI), not incident with at least one 
edge joining G1 to Gz, such that there is a vertex u’ E V(G2) with 
e = uu’ E E(G“). 

If there is a vertex in GI incident with all edges in X ,  then the claim holds 
since r1 > 1 .  Therefore we assume that no vertex in GI that is incident with 
all edges in X. 

Let r 2  = (V(G*)(. If no such vertices satisfying the claim exist, then since 
every vertex in GI is adjacent to all vertices in Gz, we have k - 1 = rlrz. 
By (4) and by rl + r2 = IV(G)l 2 1 2 k + 2, we have r2 2 I - rl 2 2. 
Since rl 2 2, and we have r 2  2 2, rlrz 2 rl + r2, and so k - 1 5 rlr2 2 
rl + r2 = IV(G)( 2 I, a contradiction. This proves the claim. I 

Let e = uu’ E E(G‘) be the edge defined in the claim above. Since 
G E T ( k ,  l ) ,  G + e has a subgraph Hwith (V(H)( 2 1 and K’(H) 2 k .  Let 
Hi = H n Gi, (1 5 i 5 2). Since K(H)  2 k ,  all the k - 1 edges joining 
GI and Gz are in E ( H )  and e E E ( H ) .  By the choice of e and by k 1 3, 
there is at least one vertex u E V(H1) - {u}. Hence 

rl 2 IV(H1)I 2 2 .  

Note that S(H) 1 K’(H) 2 k .  Counting the incidents in HI, we get 

It follows that every vertex in G1 - u is incident with exactly one of the 
k - 1 edges joining G1 to G2. Since r 2  2 2, there is an edge e‘ E E(G‘) 
not incident with u. By G E T(k ,  I), G + e’ has a subgraph H’ with 
IV(H’)I 2 1 and K’(H’) 1 k .  Let HI = H‘ fl Gi, (1 5 i 5 2). Note that 
then u has degree k - 1 in G + e’ and so u @ V(Hi). Since every vertex 
in G1 - u is incident with one of the k - 1 edges joining GI to Gz, 
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HI = GI - u and so IV(H:)( = k - 1, by (5). It follows by counting the 
incidences in Hi that 

k(k  - 1) = kIV(Hi)I 5 1 deg,,(v) 
u E V ( H { )  

Thus k = 2, as desired. I 

Corollary 2. For 1 2 k + 2 2 5 ,  every graph G E T(k, I) contains a 
& ( T I ,  rz; k ,  1 )  with 

1 5 rl + r2, and ri = 1 or 
k + 1 5  ri I E - 1, (1 I i 5 2 ) .  (7) 

Corollary 3. For k 2 3 and for every G E T(k,  I), 
(a) G has a complete subgraph K ,  with 3 I r 5 (1 - 1)/2; and 
(b) every complete subgraph in G has order at most E - 1. 

Proof. Corollary 3 follows from Corollary 2 and definition of (k,E)- 
graphs. We argue by induction to show Corollary 2. By Lemma 2, G has 
an edge-cut X with 1x1 = k - 1. Let G1 and G2 be the two components of 
G - X. If IV(Gi)l 2 E for some i E {1,2}, then we are done by induction. 
Therefore we assume that IV(Gi)l I I - 1 (1 I i I 2). Thus Corollary 2 
follows from (b) of Lemma 3. I 

Definition. Let H 1  and H2 be vertex-disjoint graphs with max{lV(Hl)I, 
IV(H2)I) 2 k. A (k, Z)-joint of HI and H2 is a simple graph obtained from 
the disjoint union of H I  and H2 by adding k new edges el,e2, ..., ek to 
H1 U H2 such that each ei is incident with a vertex in V(Hl) and a vertex 
in V(H2), and such that if the new edges e l , e 2 ,  ..., ek are joining two 
maximal complete subgraphs K,., H I  and Kr2 C H2,  then the orders of 
these subgraphs must satisfy rl + r2 2 1. Denote by [ H I ,  H2]: the set of 
all ( k ,  1)-joints of H1 and H2. Clearly [HI, H21: = [Hz ,  H I ] : .  

Lemma 4. 
the follows holds: 

Let H I  and H2 be two vertex disjoint graphs such that one of 

(a) H1 = K, , ,  H2 = Kr, with 1-1 + r2 2 1 2  k + 2 and either ri = 1 

(b) H I  E T(k , l ) ,  and H2 = Kr, with r2 = 1 or k + 1 I r2 5 1 - 1, 
or k + 1 5 ri I E - 1, i E {1,2}, 

(c) HI,H2 E T k O ,  
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1 Proof. If (a) holds, then any graph in [ H I ,  H2]k-1 is a Kz(r-1, r2; k ,  I) and 
so Lemma 4 follows from Lemma 1. Hence we assume that (b) or (c) holds. 

Let G E [H1,H2]:-1 and let E‘ denote the k - 1 edges joining H1 and 
H2. By contradiction, we assume that G is a counterexample to the lemma 
with as few vertices as possible. By definition of [ H I ,  H Z ] : - ~  and Lemma 2, 
K’(G + e )  5 k - 1 and so G + e has a bond X with 1x1 I k - 1. By 
Lemma 2, G is a (k,I)-graph. Since G @ T(k, l ) ,  there is an edge e E 
T ( G “ )  such that 

G + e is also a (k,Z)-graph. (8) 

By (€9, and by (b) or (c) of Lemma 4, we may assume that e = x1x2 with 
x1 E V(H1) and x2 E V(H2).  By (8)  and Lemma 2, K’ (H~)  2 k - 1, and 
so e fZ X .  It follows that (E’ U { e } )  f l  X = 0 and so we may assume that 

Let Hi and H: be the two components of H I  - X .  Since X is an 
edge-cut of G + e ,  exactly one of Hi and HI’ is incident with all edges 
in E’ U {e} .  We assume that Hi is incident with all edges in E’ U {e} 
and let G’ = G - V(H:).  Clearly G‘ E [Hi,H2]:-1. Since H1 E E ( k , l ) ,  
by Lemma 3, Hi is either a K ,  with r = 1 or k + 1 5 r 5 I - 1, or 
HI E T(k,  1). Note that by the definition of the ( k ,  1)-joints, when Hi = K ,  
and H2 = K,,, we have r + r2 2 1. It follows by the minimality of G and 
by (a) of Lemma 4 that G’ E T(k ,  I )  and so G’ + e has a subgraph H 
with IV(H)I 2 1 and d ( H )  1 k .  But H C G’ + e c G + e ,  contrary to 
the assumption that G is a counterexample. This completes the proof of 
Lemma4. I 

x c E(H1). 

Definition. Let 312 ( k ,  I) denote the collection of graphs that contains all 
the graphs K2(r1, r2; k ,  I )  with rl, r2 satisfying (2) and (3), such that a graph 
G of order at least 21 - 1 is in 3M ( k ,  1) if and only if there exist graphs 
HI and H2,  where H I  and H2 satisfy one of the hypotheses of Lemma 4, 
such that G E [H1, H2]:...1. 

Theorem 1. For k 2 3 and 1 2 k + 2, T(k,  I) = N ( k ,  I). 

Proof. By Lemma 4, %(k ,  I) c T(k ,  I), for any k 2 2. To see 
T(k , l )  c 3M(k,Z), let G E T(k,1) be a minimum counterexample. By 
Lemma 2, G has an edge-cut X with 1x1 = k - 1 such that G - X has two 
components, H1, H z  (say). Choose X so that 

IV(G,)l is minimized. (9) 
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If one of the H i ’ s  is a complete subgraph, say H I  = K,, and if not all 
the edges in X are incident with vertices of a complete subgraph in Hz,  
then by Lemma 3, either r = 1 or r 2 k + 1 and so G E [ H ~ , H Z ] : - ~ ,  a 
contradiction. 

Suppose then that H1 = K,  and all edges in X are incident with vertices of 
a maximal complete subgraph K f  C H2 (t  > 1). If Hz = K,, then since G E 
E ( k ,  I ) ,  we must have r + t L 1 and so G E [H1,H2]:-1, a contradiction. 
Hence by (a) of Lemma 3, H2 E T(k,  I )  and so by Lemma 2, HZ has an 
edge-cut X’ with IX’I = k - 1. Let H i  and H; be the two components of 
H z  - X’.  By Lemma 3, we may assume that the intersection of K f  and H i  
is a complete subgraph K,, and IV(Hi)l 1 k + 1. 

Since IV(Hi)I 2 k + 1, there must be an edge e E E(G“) that joins 
H1 to H i .  Since G E T(k , l ) ,  G + e has a subgraph L with IV(L)I 2 I 
and K’(L) 2 k .  Since IX’I = k - 1, H; is vertex-disjoint from L. Thus 
by K’(L) 2 k and by 1x1 = k - 1, all edges in X must be incident with 
vertices in KfI and so by the minimality of G, G - V(H;)  E [H1,Hi]:-, 
and so r + t 2 r + t’ 2 I .  Therefore G E [ H ~ , H Z ] : - ~ ,  a contradiction. 

Finally we assume that neither H1 nor Hz is a complete subgraph, and 
so by (a) of Lemma 3, Hi E E ( k ,  I )  (1 I i I 2). By Lemma 2, H1 has an 
edge-cut X” with IX”I = k - 1. Let Hi and H:’ be the two components of 
H1 - X”. By (9), some edges in X must be incident with vertices in Hi and 
some edges in X must be incident with vertices in H [ .  By Lemma 3, we 
may assume that IV(Hi)I 2 k + 1 and so there must be an edge e’ E E(G“)  
that joins H z  and H i .  Since G E T(k,I),  G + e’ has a subgraph L’ such 
that IV(L’)I 1 1 and K’(L’) 2 k .  Since lX”l = k - 1, L’ and HI’ are vertex- 
disjoint and so all edges in X must be incident with vertices in H i .  However, 
one can then replace X by X”, contrary to (9). This completes the proof of 
Theorem 1. I 

4. THE PROOFS OF THE MAIN RESULTS 

We need two more lemmas. 

Lemma 5. Let G E SN (n ,  k ,  1) and let X C E(G)  be an edge-cut with 
1x1 = k - 1 and with H I  and H2 being the two components of G - X. If 
ni = IV(Hi)l 2 I ,  then H i  E S N ( n i , k ,  1). 

Proof. Suppose that n1 = IV(H1)I 2 I but H1 @ S N ( n l , k , I ) .  By 
Lemma 3, H1 E T(k,  I ) .  Hence there is some H’ E S M ( n l , k ,  I )  with 

IE(H’)I < IE(H1)I. (10) 

Choose some G’ E [H’ ,  Hz]:-l. By Lemma 4, G’ E T(k ,  I )  and so 

f ( n , k , l )  5 IE(G’)I = IE(H’)I + IE(Hz)I + ( k  - 1 ) .  (11) 
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Combine (10) and (11) to get f (n ,  k ,  I )  < ( E ( H l ) /  + IE(Hd1 + ( k  - 1) = 
JE(G)I ,  contrary to the fact that G E S N ( n ,  k ,  1) .  I 

Lemma 6. 
then G does not have a complete subgraph of order at least k + 2. 

Suppose that k + 2 5 1 5 2k + 2 I: n. If G E S N ( n ,  k ,  I ) ,  

Proof. By contradiction, we assume that there is a minimum counterex- 
ample G that satisfies the hypothesis of the lemma but has a subgraph 
L zz K ,  with 

By Theorem 1, G E [H1,  H Z ] : - ~  for some graphs H1 and H2.  Recall that 
there are only k - 1 edges joining H1 to H2 in G. This implies that 

either L G H1 or L C H2. (13) 

By (13), we may assume that L C H I .  

Case 1. H I  is a complete graph. Then we may assume that H I  = L = 
K,. By (12) and (13), there is a vertex u E V(H1) that is not incident with 
any edges joining H1 to Hz.  

If rz = IV(G)l > I ,  then by Lemma 4, G - u E T ( k ,  I )  and so any G’ E 
[K1,G - v ] : - ~  is in T ( k , I ) .  But then by (12), IE(G’)I = IE(G - u)l + 
k - 1 = (E(G)I - ( r  - 1) + k - 1 < (E(G)I,  contrary to the assumption 
that G E S N ( n ,  k ,  I ) .  

Hence n = 2k + 2 = E .  By (b) of Lemma 3 and by (22), we must have 
H2 = K1. But then by Lemma 4, any G” E [ K k + ~ , K k + ~ ] i - ~  is in T(k,I) 
and satisfies 

IE(G”)I = ( k  + l ) k  + ( k  - 1) < k(2k + 1) + (k  - 1 )  = I E ( G ) ( ,  

contrary to the assumption that G E S%(n,k ,Z) .  

Case 2. H1 is not a complete graph. Then by (b) of Lemma 3, H I  E 
T(k,  I )  and so nl L 1.  By Lemma 5, H1 E S N  (n l ,  k ,  1 ) .  This violates the 
minimality of G .  I 

The following fact will be used in the proofs below: for positive real 
numbers x and y ,  

1x1 + lyl 5 lx + yl .  
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Theorem 2. If n 2 1 2 k + 2 2 5, then 

-('; ' )  + (n - 1 + l ) ( k  - l ) ,  

1 5 n < 2 k  + 2 ,  

(n - l ) ( k  - 1 )  - 

1 5 2 k  + 2 1 n ,  
n - 2t k2 - 3k ___ 

n 2 1 = 2t r 2k + 3 ,  

(n - 2t + l ) ( k  - 1 )  + t ( t  - 1 )  - 
L k + l ]  2 ' 

L n  ;: ; 1 k2 - 3k 
1 2 '  

(n - 2 t ) ( k  - 1) + t2 - 

n L 1 = 2t + 1 2 2k + 3 ,  

where G E S N ( n ,  k ,  1)  i f  and only if one of the following holds: 

(i) 5 5 k + 2 I 1  I n < 2k + 2,andG = K2(Z - l , l ;k ,Z)orGhas  
a vertex u of degree k - 1 such that G - v E SN (n - 1,  k ,  1) .  
(In other words, G has a unique nontrival complete subgraph K, and 
r must be 1 - 1.)  

(ii) k + 2 5 1 5  2k + 2 I n , a n d G  = K2(k + 1,k + l ; k , l ) o r G  E 
[H1,H2]L-1  such that H1 E { K I , K ~ + ~ }  U S N ( n , k , l )  and H2 E 
H1 E { K 1 , K k + l } S N ( n , k , l )  and such that 

1 (iii) n 2 I = 2t 1 2k + 3, and G = Kz( t ,  t ;  k ,  I )  or G E [ H I ,  H2Ikp1 
such that H I  E { K l , K k + J  and H2 E SN(IV(H;?)I ,k , I ) .  

(iv) n L I = 2t + 1 2 2k + 3, and G = K2(t + l , t ;k ,Z)  or G E 
[H1,H2]:-I  suchthatH1 E {KI,Kk+l)andH2 E S3Ll(IV(H2)I,k,l). 

Proof. For k + 2 5 Z 5 n I 2k + 1 ,  it follows by Theorem 1 and 
Lemma 3 that G has one and only one complete subgraph K ,  with r 2 
k + 1. Since K,  is the only complete subgraph of G of order at least k + 1 ,  
and by Corollary 2, we have r = 1 - 1 and so G has a Kz(1 - 1 , l ;  k ,  1). 
Hence if n = 1,  then G = Kz(1 - 1, l ;  k ,  1) and we are done. When n > 1, 
(i) of Theorem 2 follows by Theorem 1 and by induction on n. 

We now assume that k + 2 I 1 5 2k + 2 5 n. We first show that 

f ( n , k , Z )  I (n - l ) ( k  - 1 )  - (15) 
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Let m = [n/(k  + l ) J  L 2 and let T be a tree of rn vertices. By Corollary 1,  
T ( k  + 1 , .  . . , k + 1 ;  k , l )  E E ( k ,  1 ) .  Form a graph G(n, k ,  1) of order n 
from T ( k  + 1 , .  . . , k + 1 ;  k ,  1 )  by joining each of the other n - m(k + 1 )  
vertices via the way of (b) of Lemma 4. (By m 1 2, this can be done). 
By Lemma 4, G(n, k ,  I) E T ( k ,  I )  and (E(G(n, k ,  1)1 equals the right-hand 
side of (15). 

Let G E S m ( n ,  k ,  I ) .  If n = 2k + 2,  then by Corollary 2, G contains a 
K2(rlr r2; k ,  1). By Lemma 7, ri 5 k + 1 ( 1  I i 5 2). Thus by Corollary 2, 
either a Kk+l  is the unique complete subgraph of G with order at least 3, 
or G E Kz(k + 1 ,  k + 1 ;  k ,  1). If the former holds, then since 2 2 k + 2, 
Corollary 2 and the fact that G has only one complete subgraph of order 
at least 3 imply that this complete subgraph must have order at least 
I - 1 2 k + 1. Thus this can happen only when 1 = k + 2 and G has 
a vertex u of degree k - 1 such that G - u E Sm (n ,  k ,  1). Hence (ii) 
of Theorem 2 holds for n = 2k + 2. We shall show (ii) of Theorem 2 by 
induction on n. 

Assume that n 1 2k + 3. By Theorem 1, G E [ H I , H ~ ] : - ~ .  We may 
assume that nl = IV(H1)I and n2 = IV(H2)I with n1 5 n2. If nl 2 1, then 
by induction, 

2 (n  - l ) ( k  - 1 )  - (LA] + l a ] )  k2 - 3k 
k + l  k + l  2 -  

Hence (ii) of Theorem 2 follows by (14), (16), (15), and by induction. The 
case when n l  = 1 can be done similarly. 

Thus by (b) of Lemma 3 and by Lemma 6,  H1 = Kk+l .  If n2 5 1 - 1 ,  
then by (b) of Lemma 3, G = Kz(n1, n2; k ,  1). But by Lemma 6,121 = n2 = 

k + 1,  contrary to n L 3k + 3. Hence n2 1 1 and so G E [ K k + l , H ~ l : - ~ ,  

for some H2 E E(k,Z) .  By induction, 

k(k  + + (k  - 1 )  
2 f ( n , k , Z )  f (n  - k - l ,k ,Z)  + 

L n  ; f; 1 k2 - 3k I T -  ? (n  - k - 2 ) ( k  - 1 )  - 

= (n  - l ) ( k  - 1 )  - 
k + l  

By (15) and (17), (ii) of Theorem 2 follows. 
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We then assume that n 2 I = 2t 2 2k + 3. Let m = [(n - 2t)/ 
(k + 1)J .  Obtained a graph L‘ of order m(k + 1) + 2t from K,(t , t ;k , I )  
by adding rn distinct KkS-1’s, disjoint from the K2(t, t ;  k ,  I), and joining each 
of these Kk+l’s with k - 1 new edges to the two Kt’s so that each K ,  is 
incident with at least one new edge. By Lemma 4, L’ E T ( k ,  I ) .  Form a 
simple graph L(n ,  k ,  I) from L‘ by adding n - 2t - m(k + 1 )  new vertices 
and joining each new vertices with k - 1 edges so that not all of the 
new edges are incident with the same complete subgraph. By Lemma 4, 
L(n ,k , I )  E T ( k , f ) .  Hence 

f(n,  k ,  I )  5 IE(L(n, k ,  f ) 1  I (n - 2t + 1 )  (k  - 1 )  + t ( t  - 1 )  

(18) 

Let G E S 3 f  (n,  k ,  I ) .  By Theorem 1, G E [ H I ,  H Z ] : - ~  for some H1 and 
H2. Choose H I  and H2 so that 

IV(H1)I is minimized. (19) 

Let nl = IV(Hl)I and n2 = IV(H2)I and assume that nl I n2. 

If n = I ,  then nl I n2 I I - 1 and so by (b) of Lemma 3, we have H i  = 
K,,, (1 5 i I 2), and so IE(G)I = nl(nl - 1)/2 + (n  - nl ) (n  - n1)/2 + 
k - 1. As a function of n l ,  the minimum is reached at n1 = n2 = t and so 
G must be in K2(t, t ;  k ,  I ) .  Thus we assume that n > I .  

I f  n l  = 1 ,  then since n 2 I + 1 ,  we have 122 2 I and so by induction, 

IE(G)I 2 f ( n  - l , k , f )  + k - 1 = (n - 2t + l ) ( k  - 1 )  + t ( t  - 1 )  

and so by (18), equality must holds and (iii) of Theorem 2 follows. 
If nl = k + 1 and n2 2 I ,  then by induction, 

(k  + l ) k  
2 IE(G)J 2 f ( n  - k - l , k , I )  + k - 1 + 

and so by (18), (iii) of Theorem 2 must hold. 
If n1 = k + 1 and n2 < I ,  then by (b) of Lemma 3, H2 = Kn2.  Since 

n 2 2k + 3, n2 1 k + 2 and so there must be a vertex u E V(H2) such 
that v is not incident with any edge joining H1 to H2. Thus H2 - u = K,,-1 
and so by n > I ,  and by Lemma 5, G - u E S M ( n  - 1, k ,  I), contrary 
to (19). 
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If k + 2 5 nl < I ,  then by (b) of Lemma 3, H I  = &,. Since nl > 
k - 1 ,  there is one vertex u in H1 not incident with the k - 1 edges joining 
H1 to H2. Form G‘ from G by deleting all but one edges joining u to HI - u 
and joining to H2 with k - 2 edges. By Lemma 4, G’ E T ( k ,  1 ) .  But 
IE(G)( - (E(G’)( = (nl - 1 )  - (k  - 1 )  > 0, contrary to the assumption 
that G E S3Lz (n, k,  2). 

Finally we assume that nl 2 1 .  Since 2t 2 2k + 3,  t 2 k + 2. By 
induction, by (14), by f ( n ,  k , l )  = IE(G)l, and by t 2 k + 2, we have 

f ( n , k ,  I >  2 fhi, k ,  l )  + f(n2, k ,  1 )  + k - 1 

2 (n - 2t + l ) ( k  - 1 )  + 2t(t  - 1 )  - 2(t - l ) ( k  - 1 )  

- L;;:Jk2 - 3k 
2 

n - 2t 
~ 

k2 - 3k 
2 (n - 2t + l ) ( k  - 1 )  + t( t  - 1 )  - 

L k + l ]  2 

+ ( t  - l ) ( t  - 2k + 2) + l f i j k 2  2 3k 

l ; ; y J k 2  - 3k 
2 

2 (n - 2t + l ) ( k  - 1 )  + t ( t  - 1 )  - - 

( t  - 1) (k2  - 5k + 8) 
2 

+ 

contrary to (18). Therefore the proof for (iii) of Theorem 2 is completed. 
The proof for (iv) of Theorem 2 is similar to that for (iii) of Theorem 2, 
and so is omitted. I 
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