Edge-Maximal (k,l)-Graphs

Hong-Jian Lai
Cun-Quan Zhang
dEPARTMENT OF MATHEMATICS
WEST VIRGINIA UNIVERSITY
MORGANTOWN, WEST VIRGINIA

Abstract

A graph G is a ($k,(1)$-graph if for any subgraph H of G, that $|V(H)| \geq$ $/$ implies that $\kappa^{\prime}(H) \leq k-1$. An edge-maximal ($k, 1$)-graph G is one such that for any $e \in E\left(G^{c}\right), G+e$ is not a ($k, 1$)-graph. In [F.T. Boesch and J.A.M. McHugh, "An Edge Extremal Result for Subcohesion," Journal of Combinatorial Theory B, vol. 38 (1985), pp. 1-7l a class of edge-maximal graphs was found and used to show best possible upper bounds of the size of edge-maximal ($k, 1$)-graphs. In this paper, we investigate the lower bounds of the size of edgemaximal (k, l)-graphs. Let $f(n, k, l)$ denote the minimum size of edgemaximal (k, $/$-graphs of order n. We shall give a characterization of edge-maximal (k, l)-graphs. This characterization is used to determine $f(n, k, l)$ and to characterize the edge-maximal (k, l)-graphs with minimum sizes, for all $n \geq 1 \geq k+2 \geq 5$. Thus prior results in IF.T. Boesch and J.A.M. McHugh, op. cit.; H.-J. Lai, "The Size of Strength-Maximal Graphs," Journal of Graph Theory, vol. 14 (1990), pp. 187-197] are extended. © 1994 John Wiley \& Sons, Inc.

1. INTRODUCTION

We follow the notation of Bondy and Murty [2] and consider simple graphs only. For a real number $x,\lfloor x\rfloor$ denotes the largest integer not bigger than x. Let $\kappa^{\prime}(G)$ denote the edge-connectivity of G and let G^{c} be the complement of G. For convenience, we define $\kappa^{\prime}\left(K_{1}\right)=0$. By $H \subseteq G$ we mean that H is a subgraph of G. Generalizing a prior result of Mader [4], Boesch and McHugh called a graph G, where $|V(G)| \geq l>k \geq 2$, a (k, l)-graph if for any $H \subseteq G,|V(H)| \geq l$ implies that $\kappa^{\prime}(H) \leq k-1$. A (k, l)-graph G is an edge-maximal (k, l)-graph if, for any $e \in E\left(G^{c}\right), G+e$ has a subgraph H with $|V(H)| \geq l$ and $\kappa^{\prime}(H) \geq k$. Edge-maximal $(k, k+1)$-graphs have been studied in [1]-[6], among others.

Theorem A (Mader [4]). If G is an edge-maximal $(k+1, k+2)$-graph of order n, then

$$
|E(G)| \leq(n-k) k+\binom{k}{2}
$$

where G is an extremal graph if and only if G has a vertex v of degree k such that $G-v$ is also an extremal graph.

Theorem B (Lai [3]). If G is an edge-maximal $(k+1, k+2)$-graph of order n, then

$$
|E(G)| \geq(n-1) k-\binom{k}{2}\left\lfloor\frac{n}{k+2}\right\rfloor
$$

The bound of Theorem B is also best possible. The extremal graphs for Theorem B are characterized in [3] in a way similar to but more complicated than those for Theorem A.

In [1], Boesch and McHugh constructed a class of edge-maximal (k, l)graphs and use them to extend Theorem A to the following:

Theorem C (Boesch and McHugh [1]). Let G be a simple graph of order n and let $n \geq l \geq k$. Let $s, r \geq 0$ be integers such that $n=s(l-1)+r$ with $0 \leq r<l-1$. If G is an edge-maximal (k, l)-graph, then

$$
|E(G)| \leq\left\{\begin{array}{c}
\frac{s(l-1)(l-2)}{2}+(s-1+r)(k-1), \\
2(k-1)<l-1 \text { and } r<2(k-1), \\
\frac{s(l-1)(l-2)}{2}+s(k-1)+\frac{r(r-1)}{2}, \\
2(k-1)<l-1 \text { and } r \geq 2(k-1), \\
\frac{(l-1)(l-2)}{2}+(n-l+1)(k-1), \\
2(k-1) \geq l-1 .
\end{array}\right.
$$

The main result given in Section 2 is to do for Theorem C what Theorem B does for Theorem A. In Section 3, the structure of edge-maximal Au: correct as (k, l)-graphs are discussed, and the proofs of the main results are in edited? Section 4.

2. MAIN RESULT

Let $\mathcal{E}(k, l)$ denote the collection of all edge-maximal (k, l)-graphs and, for integers $n \geq l \geq k+1$, define

$$
f(n, k, l)=\min \{|E(G)|: G \in \mathcal{E}(k, l) \text { and }|V(G)|=n\} .
$$

And define

$$
S \mathcal{M}(n, k, l)=\{G: G \in \mathcal{E}(k, l),|V(G)|=n \text { and }|E(G)|=f(n, k, l)\} .
$$

Thus Theorem B gives a result on $f(n, k+1, k+2)$. In this paper, we shall determine $f(n, k, l)$ for all $n \geq l \geq k+2 \geq 5$, and characterize all (k, l)-graphs and all graphs in $S \mathcal{M}(n, k, l)$. For $k \geq 3$, we have

$$
f(n, k, l)=\left\{\begin{array}{c}
\binom{l-1}{2}+(n-l+1)(k-1), \\
l \leq n<2 k+2, \\
(n-1)(k-1)-\left\lfloor\frac{n}{k+1}\right\rfloor \frac{k^{2}-3 k}{2}, \\
l \leq 2 k+2 \leq n \\
(n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
n \geq l=2 t \geq 2 k+3 \\
(n-2 t)(k-1)+t^{2}-\left\lfloor\frac{n-2 t-1}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
n \geq l=2 t+1 \geq 2 k+3
\end{array}\right.
$$

3. THE STRUCTURES OF EDGE-MAXIMAL (k, I)-GRAPHS

Let m, k, l be positive integers. By Theorem B , we shall assume, throughout the paper, that $l \geq k+2$. Let T be a tree of order $m \geq 2$ with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. For positive integers $r_{1}, r_{2}, \ldots, r_{m}$, define $T\left(r_{1}, r_{2}, \ldots, r_{m} ; k, l\right)$ to be the collection of simple graphs obtained from T by replacing each vertex v_{i} by a complete graph $R_{i}=K_{r_{i}},(1 \leq i \leq m)$, and by replacing each edge $v_{i} v_{j}$ (say) of T by a set of $k-1$ edges with one end in R_{i} and the other end in R_{j} in such a way that the resulting graph is simple. When no confusion arises, we also use $T\left(r_{1}, \ldots, r_{m} ; k, l\right)$ to denote a graph in the collection. We consider the following constraints to the parameters r_{i} 's:

$$
\begin{gather*}
\text { for each } i, \quad r_{i}=1 \quad \text { or } \quad l-1 \geq r_{i} \geq k+1 ; \tag{1}\\
\text { if } v_{i} v_{j} \in E(T), \quad \text { then } r_{i}+r_{j} \geq l . \tag{2}
\end{gather*}
$$

Let $\mathcal{T}(k, l)$ denote the collection of all $T\left(r_{1}, r_{2}, \ldots, r_{m} ; k, l\right),(l>k)$, such that (1) and (2) are satisfied. Thus if $G \in \mathcal{T}(k, l)$, then

$$
\begin{equation*}
|V(G)| \geqq l . \tag{3}
\end{equation*}
$$

Lemma 1. Let $T=v_{1} v_{2} \ldots v_{m}$ be a $\left(v_{1}, v_{m}\right)$-path with $m \geq 2$, and let $G=T\left(r_{1}, r_{2}, \ldots, r_{m} ; k, l\right)$ be a graph in $\mathcal{T}(k, l)$. Then each of the following holds:
(a) $\kappa^{\prime}(G)=k-1$ and every edge-cut X with $|X|=k-1$ consists of all edges from R_{i} to R_{i+1}, for some $i \in\{1,2, \ldots, m-1\}$.
(b) If $e \in E\left(G^{c}\right)$ is an edge that joins a vertex in R_{1} to one in R_{m}, then $\kappa^{\prime}(G+e)=k$.

Proof. It follows directly from the definitions.
Note that all edge-maximal (k, l)-graphs constructed in [1] are in $\mathcal{T}(k, l)$. We therefore generalize a result in [1] to the following:

Corollary 1 ([1]). Every member in $\mathcal{T}(k, l)$ is in $\mathcal{E}(k, l)$.
Proof. Let $G=T\left(r_{1}, r_{2}, \ldots, r_{p} ; k, l\right) \in \mathcal{E}(k, l)$. Let $e \in E\left(G^{c}\right)$. We shall show that $G+e$ has a subgraph H with $|V(H)| \geq l$ and $\kappa^{\prime}(H) \geq k$. Since $e \in E\left(G^{c}\right)$ and since every R_{i} is a complete graph, e must join some R_{i} to some $R_{j}, i \neq j$. Since T is a tree, there is a unique path from the vertex representing R_{i} to that representing R_{j}. Without loss of generality, we may assume that $i=1$ and $j=m$, and that $P=v_{1} v_{2} \ldots v_{m}$ is that path. Thus by (b) of Lemma $1, G$ has a subgraph $H=P\left(r_{1}, \ldots, r_{m} ; k, l\right)$ with the desired conditions.

Lemma 2. If $|V(G)| \geq l>k$ and if $G \in \mathcal{E}(k, l)$, then $\kappa^{\prime}(G)=k-1$.

Proof. Obvious.

Lemma 3. Let $G \in \mathcal{E}(k, l)$ and let X be an edge-cut of G with $|X|=$ $k-1$ and with G_{1} being a component of $G-X$.
(a) If $\left|V\left(G_{1}\right)\right| \geq l$, then $G_{1} \in \mathcal{E}(k, l)$.
(b) If $\left|V\left(G_{1}\right)\right| \leq l-1$ and $l \geq k+2$, then G_{1} is a complete graph; moreover, when $k \geq 3$, either $\left|V\left(G_{1}\right)\right|=1$ or $\left|V\left(G_{1}\right)\right| \geq k+1$.

Proof. If $\left|V\left(G_{1}\right)\right| \geq l$, then G_{1} is not a complete graph. Since $G \in$ $\mathcal{F}(k, l)$, for any $e \in E\left(G_{1}^{c}\right), G+e$ has a subgraph L with $|V(L)| \geqq l$ and $\kappa^{\prime}(L) \geq k$. By Lemma $2, L$ must be a subgraph of G_{1} and so (a) of Lemma 3 follows.

Now suppose that $\left|V\left(G_{1}\right)\right| \leq l-1$. If G_{1} is not complete, then there is an edge $e \in E\left(G_{1}^{c}\right) \subseteq E\left(G^{c}\right)$ and so $G+e$ has no subgraph H with $|V(H)| \geq l$ and $\kappa^{\prime}(H) \geq k$, contrary to the assumption that $G \in \mathcal{E}(k, l)$. Hence G_{1} must be complete.

In the following, we shall show that if $1<\left|V\left(G_{1}\right)\right| \leq k$, then $k=2$. Assume that r_{1} is an integer so that $G_{1}=K_{r 1}$ and suppose that

$$
\begin{equation*}
1<r_{1} \leq k \tag{4}
\end{equation*}
$$

Claim. There is a vertex $u \in V\left(G_{1}\right)$, not incident with at least one edge joining G_{1} to G_{2}, such that there is a vertex $u^{\prime} \in V\left(G_{2}\right)$ with $e=u u^{\prime} \in E\left(G^{c}\right)$.
If there is a vertex in G_{1} incident with all edges in X, then the claim holds since $r_{1}>1$. Therefore we assume that no vertex in G_{1} that is incident with all edges in X.

Let $r_{2}=\left|V\left(G_{2}\right)\right|$. If no such vertices satisfying the claim exist, then since every vertex in G_{1} is adjacent to all vertices in G_{2}, we have $k-1=r_{1} r_{2}$. By (4) and by $r_{1}+r_{2}=|V(G)| \geq l \geq k+2$, we have $r_{2} \geq l-r_{1} \geq 2$. Since $r_{1} \geq 2$, and we have $r_{2} \geq 2, r_{1} r_{2} \geq r_{1}+r_{2}$, and so $k-1 \geq r_{1} r_{2} \geq$ $r_{1}+r_{2}=|V(G)| \geq l$, a contradiction. This proves the claim.

Let $e=u u^{\prime} \in E\left(G^{c}\right)$ be the edge defined in the claim above. Since $G \in \mathcal{E}(k, l), G+e$ has a subgraph H with $|V(H)| \geq l$ and $\kappa^{\prime}(H) \geq k$. Let $H_{i}=H \cap G_{i},(1 \leq i \leq 2)$. Since $\kappa(H) \geq k$, all the $k-1$ edges joining G_{1} and G_{2} are in $E(H)$ and $e \in E(H)$. By the choice of e and by $k \geq 3$, there is at least one vertex $v \in V\left(H_{1}\right)-\{u\}$. Hence

$$
\begin{equation*}
r_{1} \geq\left|V\left(H_{1}\right)\right| \geq 2 \tag{5}
\end{equation*}
$$

Note that $\delta(H) \geq \kappa^{\prime}(H) \geq k$. Counting the incidents in H_{1}, we get

$$
k\left|V\left(H_{1}\right)\right| \leq \sum_{v \in V\left(H_{1}\right)} \operatorname{deg}_{H}(v) \leq\left|V\left(H_{1}\right)\right|\left(\left|V\left(H_{1}\right)\right|-1\right)+k,
$$

and so $\left(\left|V\left(H_{1}\right)\right|-1\right) k \leq\left(\left|V\left(H_{1}\right)\right|-1\right)\left|V\left(H_{1}\right)\right|$. By (5) and (4),

$$
\begin{equation*}
\left|V\left(H_{1}\right)\right|=k=r_{1}=\left|V\left(G_{1}\right)\right|, \quad \text { and so } H_{1}=G_{1} \tag{6}
\end{equation*}
$$

It follows that every vertex in $G_{1}-u$ is incident with exactly one of the $k-1$ edges joining G_{1} to G_{2}. Since $r_{2} \geq 2$, there is an edge $e^{\prime} \in E\left(G^{c}\right)$ not incident with u. By $G \in \mathcal{E}(k, l), G+e^{\prime}$ has a subgraph H^{\prime} with $\left|V\left(H^{\prime}\right)\right| \geq l$ and $\kappa^{\prime}\left(H^{\prime}\right) \geq k$. Let $H_{i}^{\prime}=H^{\prime} \cap G_{i},(1 \leq i \leq 2)$. Note that then u has degree $k-1$ in $G+e^{\prime}$ and so $u \notin V\left(H_{1}^{\prime}\right)$. Since every vertex in $G_{1}-u$ is incident with one of the $k-1$ edges joining G_{1} to G_{2},
$H_{1}^{\prime}=G_{1}-u$ and so $\left|V\left(H_{1}^{\prime}\right)\right|=k-1$, by (5). It follows by counting the incidences in H_{1}^{\prime} that

$$
\begin{aligned}
k(k-1)=k\left|V\left(H_{1}^{\prime}\right)\right| & \leq \sum_{v \in V\left(H_{1}^{\prime}\right)} \operatorname{deg}_{H^{\prime}}(v) \\
& \leq\left|V\left(H_{1}^{\prime}\right)\right|\left(\left|V\left(H_{1}^{\prime}\right)\right|-1\right)+k \\
& =(k-1)(k-2)+k
\end{aligned}
$$

Thus $k=2$, as desired.
Corollary 2. For $l \geq k+2 \geq 5$, every graph $G \in \mathcal{E}(k, l)$ contains a $K_{2}\left(r_{1}, r_{2} ; k, l\right)$ with
$l \leq r_{1}+r_{2}, \quad$ and $r_{i}=1 \quad$ or

$$
\begin{equation*}
k+1 \leq r_{i} \leq l-1, \quad(1 \leq i \leq 2) \tag{7}
\end{equation*}
$$

Corollary 3. For $k \geq 3$ and for every $G \in \mathcal{E}(k, l)$,
(a) G has a complete subgraph K_{r} with $3 \leq r \leq(l-1) / 2$; and
(b) every complete subgraph in G has order at most $l-1$.

Proof. Corollary 3 follows from Corollary 2 and definition of (k, l)graphs. We argue by induction to show Corollary 2. By Lemma 2, G has an edge-cut X with $|X|=k-1$. Let G_{1} and G_{2} be the two components of $G-X$. If $\left|V\left(G_{i}\right)\right| \geqslant l$ for some $i \in\{1,2\}$, then we are done by induction. Therefore we assume that $\left|V\left(G_{i}\right)\right| \leq l-1(1 \leq i \leq 2)$. Thus Corollary 2 follows from (b) of Lemma 3.

Definition. Let H_{1} and H_{2} be vertex-disjoint graphs with $\max \left\{\left|V\left(H_{1}\right)\right|\right.$, $\left.\left|V\left(H_{2}\right)\right|\right\} \geq k$. A (k, l)-joint of H_{1} and H_{2} is a simple graph obtained from the disjoint union of H_{1} and H_{2} by adding k new edges $e_{1}, e_{2}, \ldots, e_{k}$ to $H_{1} \cup H_{2}$ such that each e_{i} is incident with a vertex in $V\left(H_{1}\right)$ and a vertex in $V\left(H_{2}\right)$, and such that if the new edges $e_{1}, e_{2}, \ldots, e_{k}$ are joining two maximal complete subgraphs $K_{r_{1}} \subseteq H_{1}$ and $K_{r_{2}} \subseteq H_{2}$, then the orders of these subgraphs must satisfy $r_{1}+r_{2} \geq l$. Denote by $\left[H_{1}, H_{2}\right]_{k}^{l}$ the set of all (k, l)-joints of H_{1} and H_{2}. Clearly $\left[H_{1}, H_{2}\right]_{k}^{l}=\left[H_{2}, H_{1}\right]_{k}^{l}$.

Lemma 4. Let H_{1} and H_{2} be two vertex disjoint graphs such that one of the follows holds:
(a) $H_{1}=K_{r_{1}}, H_{2}=K_{r_{2}}$ with $r_{1}+r_{2} \geq l \geq k+2$ and either $r_{i}=1$ or $k+1 \leq r_{i} \leq l-1, i \in\{1,2\}$,
(b) $H_{1} \in \mathcal{E}(k, l)$, and $H_{2}=K_{r_{2}}$ with $r_{2}=1$ or $k+1 \leq r_{2} \leq l-1$,
(c) $H_{1}, H_{2} \in \mathcal{E}(k, l)$,
then $\left[H_{1}, H_{2}\right]_{k-1}^{l} \subseteq \mathcal{E}(k, l)$.
Proof. If (a) holds, then any graph in [$\left.H_{1}, H_{2}\right]_{k-1}^{l}$ is a $K_{2}\left(r_{1}, r_{2} ; k, l\right)$ and so Lemma 4 follows from Lemma 1. Hence we assume that (b) or (c) holds.

Let $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$ and let E^{\prime} denote the $k-1$ edges joining H_{1} and H_{2}. By contradiction, we assume that G is a counterexample to the lemma with as few vertices as possible. By definition of $\left[H_{1}, H_{2}\right]_{k-1}^{l}$ and Lemma 2, $\kappa^{\prime}(G+e) \leq k-1$ and so $G+e$ has a bond X with $|X| \leq k-1$. By Lemma 2, G is a (k, l)-graph. Since $G \notin \mathcal{E}(k, l)$, there is an edge $e \in$ $\mathcal{E}\left(G^{c}\right)$ such that

$$
\begin{equation*}
G+e \text { is also a }(k, l) \text {-graph. } \tag{8}
\end{equation*}
$$

By (8), and by (b) or (c) of Lemma 4, we may assume that $e=x_{1} x_{2}$ with $x_{1} \in V\left(H_{1}\right)$ and $x_{2} \in V\left(H_{2}\right)$. By (8) and Lemma 2, $\kappa^{\prime}\left(H_{i}\right) \geq k-1$, and so $e \notin X$. It follows that ($\left.E^{\prime} \cup\{e\}\right) \cap X=\varnothing$ and so we may assume that $X \subseteq E\left(H_{1}\right)$.

Let H_{1}^{\prime} and $H_{1}^{\prime \prime}$ be the two components of $H_{1}-X$. Since X is an edge-cut of $G+e$, exactly one of H_{1}^{\prime} and $H_{1}^{\prime \prime}$ is incident with all edges in $E^{\prime} \cup\{e\}$. We assume that H_{1}^{\prime} is incident with all edges in $E^{\prime} \cup\{e\}$ and let $G^{\prime}=G-V\left(H_{1}^{\prime \prime}\right)$. Clearly $G^{\prime} \in\left[H_{1}^{\prime}, H_{2}\right]_{k-1}^{l}$. Since $H_{1} \in \mathcal{E}(k, l)$, by Lemma $3, H_{1}^{\prime}$ is either a K_{r} with $r=1$ or $k+1 \leq r \leq l-1$, or $H_{1}^{\prime} \in \mathcal{E}(k, l)$. Note that by the definition of the (k, l)-joints, when $H_{1}^{\prime}=K_{r}$ and $H_{2}=K_{r_{2}}$, we have $r+r_{2} \geq l$. It follows by the minimality of G and by (a) of Lemma 4 that $G^{\prime} \in \mathcal{E}(k, l)$ and so $G^{\prime}+e$ has a subgraph H with $|V(H)| \geq l$ and $\kappa^{\prime}(H) \geq k$. But $H \subseteq G^{\prime}+e \subseteq G+e$, contrary to the assumption that G is a counterexample. This completes the proof of Lemma 4.

Definition. Let $\mathcal{M}(k, l)$ denote the collection of graphs that contains all the graphs $K_{2}\left(r_{1}, r_{2} ; k, l\right)$ with r_{1}, r_{2} satisfying (2) and (3), such that a graph G of order at least $2 l-1$ is in $\mathcal{M}(k, l)$ if and only if there exist graphs H_{1} and H_{2}, where H_{1} and H_{2} satisfy one of the hypotheses of Lemma 4, such that $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$.

Theorem 1. For $k \geq 3$ and $l \geq k+2, \mathcal{E}(k, l)=\mathcal{M}(k, l)$.
Proof. By Lemma 4, $\mathcal{M}(k, l) \subseteq \mathcal{E}(k, l)$, for any $k \geq 2$. To see $\mathcal{E}(k, l) \subseteq \mathcal{M}(k, l)$, let $G \in \mathcal{E}(k, l)$ be a minimum counterexample. By Lemma $2, G$ has an edge-cut X with $|X|=k-1$ such that $G-X$ has two components, H_{1}, H_{2} (say). Choose X so that

$$
\begin{equation*}
\left|V\left(G_{1}\right)\right| \text { is minimized. } \tag{9}
\end{equation*}
$$

If one of the H_{i} 's is a complete subgraph, say $H_{1}=K_{r}$, and if not all the edges in X are incident with vertices of a complete subgraph in H_{2}, then by Lemma 3 , either $r=1$ or $r \geq k+1$ and so $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$, a contradiction.

Suppose then that $H_{1}=K_{r}$ and all edges in X are incident with vertices of a maximal complete subgraph $K_{t} \subseteq H_{2}(t>1)$. If $H_{2}=K_{t}$, then since $G \in$ $\mathcal{E}(k, l)$, we must have $r+t \geq l$ and so $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$, a contradiction. Hence by (a) of Lemma 3, $H_{2} \in \mathcal{E}(k, l)$ and so by Lemma $2, H_{2}$ has an edge-cut X^{\prime} with $\left|X^{\prime}\right|=k-1$. Let H_{2}^{\prime} and $H_{2}^{\prime \prime}$ be the two components of $H_{2}-X^{\prime}$. By Lemma 3, we may assume that the intersection of K_{t} and H_{2}^{\prime} is a complete subgraph $K_{t^{\prime}}$ and $\left|V\left(H_{2}^{\prime}\right)\right| \geq k+1$.

Since $\left|V\left(H_{2}^{\prime}\right)\right| \geq k+1$, there must be an edge $e \in E\left(G^{c}\right)$ that joins H_{1} to H_{2}^{\prime}. Since $G \in \mathcal{E}(k, l), G+e$ has a subgraph L with $|V(L)| \geq l$ and $\kappa^{\prime}(L) \geq k$. Since $\left|X^{\prime}\right|=k-1, H_{2}^{\prime \prime}$ is vertex-disjoint from L. Thus by $\kappa^{\prime}(L) \geq k$ and by $|X|=k-1$, all edges in X must be incident with vertices in $K_{t^{\prime}}$ and so by the minimality of $G, G-V\left(H_{2}^{\prime \prime}\right) \in\left[H_{1}, H_{2}^{\prime}\right]_{k-1}^{l}$ and so $r+t \geq r+t^{\prime} \geq l$. Therefore $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$, a contradiction.

Finally we assume that neither H_{1} nor H_{2} is a complete subgraph, and so by (a) of Lemma $3, H_{i} \in \mathcal{E}(k, l)(1 \leq i \leq 2)$. By Lemma $2, H_{1}$ has an edge-cut $X^{\prime \prime}$ with $\left|X^{\prime \prime}\right|=k-1$. Let H_{1}^{\prime} and $H_{1}^{\prime \prime}$ be the two components of $H_{1}-X^{\prime \prime}$. By (9), some edges in X must be incident with vertices in H_{1}^{\prime} and some edges in X must be incident with vertices in $H_{1}^{\prime \prime}$. By Lemma 3, we may assume that $\left|V\left(H_{1}^{\prime}\right)\right| \geq k+1$ and so there must be an edge $e^{\prime} \in E\left(G^{c}\right)$ that joins H_{2} and H_{1}^{\prime}. Since $G \in \mathcal{E}(k, l), G+e^{\prime}$ has a subgraph L^{\prime} such that $\left|V\left(L^{\prime}\right)\right| \geq l$ and $\kappa^{\prime}\left(L^{\prime}\right) \geq k$. Since $\left|X^{\prime \prime}\right|=k-1, L^{\prime}$ and $H_{1}^{\prime \prime}$ are vertexdisjoint and so all edges in X must be incident with vertices in H_{1}^{\prime}. However, one can then replace X by $X^{\prime \prime}$, contrary to (9). This completes the proof of Theorem 1.

4. THE PROOFS OF THE MAIN RESULTS

We need two more lemmas.
Lemma 5. Let $G \in S \mathcal{M}(n, k, l)$ and let $X \subseteq E(G)$ be an edge-cut with $|X|=k-1$ and with H_{1} and H_{2} being the two components of $G-X$. If $n_{i}=\left|V\left(H_{i}\right)\right| \geq l$, then $H_{i} \in S \mathcal{M}\left(n_{i}, k, l\right)$.

Proof. Suppose that $n_{1}=\left|V\left(H_{1}\right)\right| \geq l$ but $H_{1} \notin S \mathcal{M}\left(n_{1}, k, l\right)$. By Lemma $3, H_{1} \in \mathcal{E}(k, l)$. Hence there is some $H^{\prime} \in S \mathcal{M}\left(n_{1}, k, l\right)$ with

$$
\begin{equation*}
\left|E\left(H^{\prime}\right)\right|<\left|E\left(H_{1}\right)\right| \tag{10}
\end{equation*}
$$

Choose some $G^{\prime} \in\left[H^{\prime}, H_{2}\right]_{k-1}^{l}$. By Lemma $4, G^{\prime} \in \mathcal{E}(k, l)$ and so

$$
\begin{equation*}
f(n, k, l) \leq\left|E\left(G^{\prime}\right)\right|=\left|E\left(H^{\prime}\right)\right|+\left|E\left(H_{2}\right)\right|+(k-1) \tag{11}
\end{equation*}
$$

Combine (10) and (11) to get $f(n, k, l)<\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|+(k-1)=$ $|E(G)|$, contrary to the fact that $G \in S \mathcal{M}(n, k, l)$.

Lemma 6. Suppose that $k+2 \leq l \leq 2 k+2 \leq n$. If $G \in S \mathcal{M}(n, k, l)$, then G does not have a complete subgraph of order at least $k+2$.

Proof. By contradiction, we assume that there is a minimum counterexample G that satisfies the hypothesis of the lemma but has a subgraph $L \cong K_{r}$ with

$$
\begin{equation*}
r \geq k+2 \tag{12}
\end{equation*}
$$

By Theorem 1, $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$ for some graphs H_{1} and H_{2}. Recall that there are only $k-1$ edges joining H_{1} to H_{2} in G. This implies that

$$
\begin{equation*}
\text { either } L \subseteq H_{1} \quad \text { or } \quad L \subseteq H_{2} \tag{13}
\end{equation*}
$$

By (13), we may assume that $L \subseteq H_{1}$.
Case 1. H_{1} is a complete graph. Then we may assume that $H_{1}=L=$ K_{r}. By (12) and (13), there is a vertex $v \in V\left(H_{1}\right)$ that is not incident with any edges joining H_{1} to H_{2}.

If $n=|V(G)|>l$, then by Lemma $4, G-v \in \mathcal{E}(k, l)$ and so any $G^{\prime} \in$ $\left[K_{1}, G-v\right]_{k-1}^{l}$ is in $\mathcal{E}(k, l)$. But then by (12), $\left|E\left(G^{\prime}\right)\right|=|E(G-v)|+$ $k-1=|E(G)|-(r-1)+k-1<|E(G)|$, contrary to the assumption that $G \in S \mathcal{M}(n, k, l)$.

Hence $n=2 k+2=l$. By (b) of Lemma 3 and by (12), we must have $H_{2}=K_{1}$. But then by Lemma 4, any $G^{\prime \prime} \in\left[K_{k+1}, K_{k+1}\right]_{k-1}^{l}$ is in $\mathcal{E}(k, l)$ and satisfies

$$
\left|E\left(G^{\prime \prime}\right)\right|=(k+1) k+(k-1)<k(2 k+1)+(k-1)=|E(G)|
$$

contrary to the assumption that $G \in S \mathcal{M}(n, k, l)$.
Case 2. H_{1} is not a complete graph. Then by (b) of Lemma 3, $H_{1} \in$ $\mathcal{E}(k, l)$ and so $n_{1} \geq l$. By Lemma $5, H_{1} \in S \mathcal{M}\left(n_{1}, k, l\right)$. This violates the minimality of G.

The following fact will be used in the proofs below: for positive real numbers x and y,

$$
\begin{equation*}
\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor . \tag{14}
\end{equation*}
$$

Theorem 2. If $n \geq l \geq k+2 \geq 5$, then

$$
f(n, k, l)=\left\{\begin{array}{c}
\binom{l-1}{2}+(n-l+1)(k-1), \\
l \leq n<2 k+2 \\
(n-1)(k-1)-\left\lfloor\frac{n}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
l \leq 2 k+2 \leq n \\
(n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
n \geq l=2 t \geq 2 k+3 \\
(n-2 t)(k-1)+t^{2}-\left\lfloor\frac{n-2 t-1}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
n \geq l=2 t+1 \geq 2 k+3
\end{array}\right.
$$

where $G \in S \mathcal{M}(n, k, l)$ if and only if one of the following holds:
(i) $5 \leq k+2 \leq l \leq n<2 k+2$, and $G=K_{2}(l-1,1 ; k, l)$ or G has a vertex v of degree $k-1$ such that $G-v \in S \mathcal{M}(n-1, k, l)$. (In other words, G has a unique nontrival complete subgraph K_{r} and r must be $l-1$.)
(ii) $k+2 \leq l \leq 2 k+2 \leq n$, and $G=K_{2}(k+1, k+1 ; k, l)$ or $G \in$ [$\left.H_{1}, H_{2}\right]_{k-1}^{l}$ such that $H_{1} \in\left\{K_{1}, K_{k+1}\right\} \cup S \mathcal{M}(n, k, l)$ and $H_{2} \in$ $H_{1} \in\left\{K_{1}, K_{k+1}\right\} S \mathcal{M}(n, k, l)$ and such that

$$
\left\lfloor\frac{\left|V\left(H_{1}\right)\right|}{k+1}\right\rfloor+\left\lfloor\frac{\left|V\left(H_{2}\right)\right|}{k+1}\right\rfloor=\left\lfloor\frac{n}{k+1}\right\rfloor .
$$

(iii) $n \geq l=2 t \geq 2 k+3$, and $G=K_{2}(t, t ; k, l)$ or $G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$ such that $H_{1} \in\left\{K_{1}, K_{k+1}\right\}$ and $H_{2} \in S \mathcal{M}\left(\left|V\left(H_{2}\right)\right|, k, l\right)$.
(iv) $n \geq l=2 t+1 \geq 2 k+3$, and $G=K_{2}(t+1, t ; k, l)$ or $G \in$ $\left[H_{1}, H_{2}\right]_{k-1}^{l}$ such that $H_{1} \in\left\{K_{1}, K_{k+1}\right\}$ and $H_{2} \in S \mathcal{M}\left(\left|V\left(H_{2}\right)\right|, k, l\right)$.

Proof. For $k+2 \leq l \leq n \leq 2 k+1$, it follows by Theorem 1 and Lemma 3 that G has one and only one complete subgraph K_{r} with $r \geq$ $k+1$. Since K_{r} is the only complete subgraph of G of order at least $k+1$, and by Corollary 2, we have $r=l-1$ and so G has a $K_{2}(l-1,1 ; k, l)$. Hence if $n=l$, then $G=K_{2}(l-1,1 ; k, l)$ and we are done. When $n>l$, (i) of Theorem 2 follows by Theorem 1 and by induction on n.

We now assume that $k+2 \leq l \leq 2 k+2 \leq n$. We first show that

$$
\begin{equation*}
f(n, k, l) \leq(n-1)(k-1)-\left\lfloor\frac{n}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \tag{15}
\end{equation*}
$$

Let $m=\lfloor n /(k+1)\rfloor \geq 2$ and let T be a tree of m vertices. By Corollary 1 , $T(k+1, \ldots, k+1 ; k, l) \in \mathcal{E}(k, l)$. Form a graph $G(n, k, l)$ of order n from $T(k+1, \ldots, k+1 ; k, l)$ by joining each of the other $n-m(k+1)$ vertices via the way of (b) of Lemma 4. (By $m \geq 2$, this can be done). By Lemma $4, G(n, k, l) \in \mathcal{E}(k, l)$ and $\mid E(G(n, k, l) \mid$ equals the right-hand side of (15).

Let $G \in S \mathcal{M}(n, k, l)$. If $n=2 k+2$, then by Corollary $2, G$ contains a $K_{2}\left(r_{1}, r_{2} ; k, l\right)$. By Lemma $7, r_{i} \leq k+1(1 \leq i \leq 2)$. Thus by Corollary 2, either a K_{k+1} is the unique complete subgraph of G with order at least 3 , or $G \in K_{2}(k+1, k+1 ; k, l)$. If the former holds, then since $l \geq k+2$, Corollary 2 and the fact that G has only one complete subgraph of order at least 3 imply that this complete subgraph must have order at least $l-1 \geq k+1$. Thus this can happen only when $l=k+2$ and G has a vertex v of degree $k-1$ such that $G-v \in S \mathcal{M}(n, k, l)$. Hence (ii) of Theorem 2 holds for $n=2 k+2$. We shall show (ii) of Theorem 2 by induction on n.

Assume that $n \geq 2 k+3$. By Theorem $1, G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$. We may assume that $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$ with $n_{1} \leq n_{2}$. If $n_{1} \geq l$, then by induction,

$$
\begin{align*}
f(n, k, l) & \geq \sum_{i=1}^{2} f\left(n_{i}, k, l\right)+(k-1) \\
& \geq(n-1)(k-1)-\left(\left\lfloor\frac{n_{1}}{k+1}\right\rfloor+\left\lfloor\frac{n_{2}}{k+1}\right\rfloor\right) \frac{k^{2}-3 k}{2} . \tag{16}
\end{align*}
$$

Hence (ii) of Theorem 2 follows by (14), (16), (15), and by induction. The case when $n_{1}=1$ can be done similarly.

Thus by (b) of Lemma 3 and by Lemma 6, $H_{1}=K_{k+1}$. If $n_{2} \leq l-1$, then by (b) of Lemma 3, $G=K_{2}\left(n_{1}, n_{2} ; k, l\right)$. But by Lemma 6, $n_{1}=n_{2}=$ $k+1$, contrary to $n \geq 3 k+3$. Hence $n_{2} \geq l$ and so $G \in\left[K_{k+1}, H_{2}\right]_{k-1}^{l}$, for some $H_{2} \in \mathcal{E}(k, l)$. By induction,

$$
\begin{align*}
f(n, k, l) \geq & f(n-k-1, k, l)+\frac{k(k+1)}{2}+(k-1) \\
\geq & (n-k-2)(k-1)-\left\lfloor\frac{n-k-1}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
& +\frac{(k+1) k}{2}+(k-1) \\
= & (n-1)(k-1)-\left\lfloor\frac{n}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} . \tag{17}
\end{align*}
$$

By (15) and (17), (ii) of Theorem 2 follows.

We then assume that $n \geq l=2 t \geq 2 k+3$. Let $m=\lfloor(n-2 t) /$ $(k+1)$]. Obtained a graph L^{\prime} of order $m(k+1)+2 t$ from $K_{2}(t, t ; k, l)$ by adding m distinct K_{k+1} 's, disjoint from the $K_{2}(t, t ; k, l)$, and joining each of these K_{k+1} 's with $k-1$ new edges to the two K_{t} 's so that each K_{t} is incident with at least one new edge. By Lemma $4, L^{\prime} \in \mathcal{E}(k, l)$. Form a simple graph $L(n, k, l)$ from L^{\prime} by adding $n-2 t-m(k+1)$ new vertices and joining each new vertices with $k-1$ edges so that not all of the new edges are incident with the same complete subgraph. By Lemma 4, $L(n, k, l) \in \mathcal{E}(k, l)$. Hence

$$
\begin{align*}
f(n, k, l) \leq & \mid E(L(n, k, l) \mid \leq(n-2 t+1)(k-1)+t(t-1) \\
& -\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} . \tag{18}
\end{align*}
$$

Let $G \in S \mathcal{M}(n, k, l)$. By Theorem $1, G \in\left[H_{1}, H_{2}\right]_{k-1}^{l}$ for some H_{1} and H_{2}. Choose H_{1} and H_{2} so that

$$
\begin{equation*}
\left|V\left(H_{1}\right)\right| \text { is minimized. } \tag{19}
\end{equation*}
$$

Let $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$ and assume that $n_{1} \leq n_{2}$.
If $n=l$, then $n_{1} \leq n_{2} \leq l-1$ and so by (b) of Lemma 3, we have $H_{i}=$ $K_{n_{i}}(1 \leq i \leq 2)$, and so $|E(G)|=n_{1}\left(n_{1}-1\right) / 2+\left(n-n_{1}\right)\left(n-n_{1}\right) / 2+$ $k-1$. As a function of n_{1}, the minimum is reached at $n_{1}=n_{2}=t$ and so G must be in $K_{2}(t, t ; k, l)$. Thus we assume that $n>l$.

If $n_{1}=1$, then since $n \geq l+1$, we have $n_{2} \geq l$ and so by induction,

$$
\begin{aligned}
|E(G)| \geq & f(n-1, k, l)+k-1=(n-2 t+1)(k-1)+t(t-1) \\
& -\left\lfloor\frac{n-2 t-1}{k+1}\right\rfloor \frac{k^{2}-3 k}{2}
\end{aligned}
$$

and so by (18), equality must holds and (iii) of Theorem 2 follows.
If $n_{1}=k+1$ and $n_{2} \geq l$, then by induction,

$$
\begin{aligned}
|E(G)| & \geq f(n-k-1, k, l)+k-1+\frac{(k+1) k}{2} \\
& =(n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2}
\end{aligned}
$$

and so by (18), (iii) of Theorem 2 must hold.
If $n_{1}=k+1$ and $n_{2}<l$, then by (b) of Lemma 3, $H_{2}=K_{n_{2}}$. Since $n \geq 2 k+3, n_{2} \geq k+2$ and so there must be a vertex $v \in V\left(H_{2}\right)$ such that v is not incident with any edge joining H_{1} to H_{2}. Thus $H_{2}-v=K_{n_{2}-1}$ and so by $n>l$, and by Lemma $5, G-v \in S \mathcal{M}(n-1, k, l)$, contrary to (19).

If $k+2 \leq n_{1}<l$, then by (b) of Lemma 3, $H_{1}=K_{n_{1}}$. Since $n_{1}>$ $k-1$, there is one vertex v in H_{1} not incident with the $k-1$ edges joining H_{1} to H_{2}. Form G^{\prime} from G by deleting all but one edges joining v to $H_{1}-v$ and joining to H_{2} with $k-2$ edges. By Lemma $4, G^{\prime} \in \mathcal{E}(k, l)$. But $|E(G)|-\left|E\left(G^{\prime}\right)\right|=\left(n_{1}-1\right)-(k-1)>0$, contrary to the assumption that $G \in S \mathcal{M}(n, k, l)$.

Finally we assume that $n_{1} \geq l$. Since $2 t \geq 2 k+3, t \geq k+2$. By induction, by (14), by $f(n, k, l)=|E(G)|$, and by $t \geq k+2$, we have

$$
\begin{aligned}
f(n, k, l) \geq & f\left(n_{1}, k, l\right)+f\left(n_{2}, k, l\right)+k-1 \\
\geq & (n-2 t+1)(k-1)+2 t(t-1)-2(t-1)(k-1) \\
& -\left\lfloor\frac{n-4 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
\geq & (n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
& +(t-1)(t-2 k+2)+\left\lfloor\frac{2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
\geq & (n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2} \\
& +\frac{(t-1)\left(k^{2}-5 k+8\right)}{2} \\
> & (n-2 t+1)(k-1)+t(t-1)-\left\lfloor\frac{n-2 t}{k+1}\right\rfloor \frac{k^{2}-3 k}{2}
\end{aligned}
$$

contrary to (18). Therefore the proof for (iii) of Theorem 2 is completed. The proof for (iv) of Theorem 2 is similar to that for (iii) of Theorem 2, and so is omitted.

ACKNOWLEDGMENT

The work of C. Q. Zhang was partially supported under NSF Grant DMS8906973.

References

[1] F.T. Boesch and J. A. M. McHugh, An edge extremal result for subcohesion. J. Combinat. Theory Ser. B 38 (1985) 1-7.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. American Elsevier, New York (1976).
[3] H.-J. Lai, The size of strength-maximal graphs. J. Graph Theory 14 (1990) 187-197.

240 JOURNAL OF GRAPH THEORY

[4] W. Mader, Minimale n-fach kantenzusammenhängende Graphen. Math. Ann. 191 (1971) 21-28.
[5] D. Matula, K-components, clusters, and slicings in graphs. SIAM J. Appl. Math. 22 (1971) 459-480.
[6] J. Mitchem, An extension of Brooks' theorem to n-degenerate graphs. Discrete Math. 17 (1977) 291-298.

