Small cycle covers of planar graphs
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We follow the notation of Bondy and Murty [3], unless stated otherwise.
Two edges ¢ and ¢ of G are parallel or are a pair of multiple edges ifeand ¢
have the same ends in G. Graphs in this note are finite and may have mul-
tiple edges but loops are not allowed. Let G be a graph and let X C E(G),
the contraction G/X is the graph obtained from G by identifying the ends
of each edge in X and deleting the resulting loops. When H isa connected
subgraph, we use G/H for G/E(H).

Let G be a 2-edge-connected graph with n vertices. A cycle cover (CC)
of G is a collection C of cycles in G such that every edge of G lies in at
least one cycle in C. A cycle double cover (CDC) of G is is cycle cover C of
G such that every edge of G lies in exactly two cycles of C. Let cc(G) de-
note the minimum number of cycles in a CC of G and s¢(G) the minimum
number of cycles in a CDC of G. Bondy posed the following conjectures in

[1]:

Conjecture SCDC: If G is a 2-edge-connected simple graph with n ver-
tices, then Co

se(G) <n—1. (1)

Conjecture SCC: If G is simple and 2-edge-connected, then

o°n —
ce(G) < “3 1 (2)
These conjectures, as pointed out by Bondy (see |1] and [2]), are closely
related to the Cycle Double Cover Conjecture ([11] and [12]) and the Hajés’
conjecture (see [1] and [2]) on decomposing even graphs into cycles. Previ-
ously, Bondy and Seyffarth proved the following results.

Theroem 1 (Bondy and Seyffarth (2], [10]) Let G be a simple plane
triangulation with n vertices. Then '

sc(G) £n—1.

CONGRESSUS NUMERANTIUM 85(1991), pp.203-209



Theorem 2 (Seyffarth [9], [10]) If G is a simple plane triangulation on
n vertices with A{G) > 8 and n > (3A(G)/2) + 1, then there exists a CDC
of G with at most n — 2 cycles.

Theorem 3 (Seyffarth [10]) If G is a simple 4-connected planar graph
with n vertices, then

ce(G)<n-1.

The method used by Seyffarth in the proof of Theorem 2 can be applied
to show the following:

Theorem 4 For any integer m > 0, there is an integer N(m) such that
for any simple plane triangulation G with diameter of G at least N (m),

5¢(G)<n-m.

Proof: For-the sake of completeness, we repeat some of Seyffarth’s ar-
gument here. For given m > 0, we choose N(m) > 3m+1. Let G
be a simple plane triangulation with diameter at least N(m). Then G
has a path P = v,u;---v, where k is the diameter of G such that the
distance of v; and v; in G is the same as the distance of v; and v; in
P, for any 4,5 € {1,2,---,k}. Since G is a plane triangulation, for any
v € V(G), let C, be the cycle formed by the neighbors of v in G. Then
C={C,: veV(G)} isa CDC of G.

Fix an 1, (1 <1 < m). For each of the vertex v € N(v3-1), we replace
the segment v™vv* of C, by v~vs;_;vv* and denote the resulting cycle by
C,. This can be done for all ¢, (1 < i < m) since vs;,_; and vs;_; have
distance at least 3 in G. Thus

C'={C: ve U(N(vsi-1) U {wsies DHU(ULCL = v e N(vsizi)})
i=1 i=1
is a CDC of G. This proves Theorem 4. O

We consider the SCC conjecture for planar graphs and we start with a
multigraph approach. For a graph G, define a relation on E(G) such that
¢ is relatred to ¢' if and only if either ¢ = ¢' or ¢ and €' are parallel in
G. It is easy to check that this is an egivalence realtion. Let le] denote
the equivalence class containing ¢ and let [G] denote the collection of all
equivalence classes. Define

#(G)= 2 (llell - 1).

[elelc]

Then G is simple if and only if 4(G) = 0. The multiple version of Conjec-
tures SCDC and SCC can then be stated below.

Conjecture SCDCM (multigraph version): If G is a 2-edge-connected
graph with n vertices, then

5¢(G) < n -1+ u(G).
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Conjecture SCCM (multigraph version) If G is a 2-edge-connected graph
with n vertices, then

2n-1 pu(G)
3 + 2

Proposition 5 Each of the following holds:

(i) SCCM implies SCC.

(ii) SCDCM and SCDC are equivalent.

cc(G) <

Proof: Only part (ii) needs a proof. Since G is simple if and only
if u(G) = 0, SCDCM imples SCDC. Conversely, we assume that truth
of SCDC and consider a 2-edge-connected graph G with n vertices. By
contradiction, we assume that G is a counterexample to Conjecture SCDCM
with |V(G)| + u(G) minimized. By the truth of SCDC, mu(G) > 0, and
so there is some ¢ € E(G) with |[[e]| > 1. Let e,¢' € [¢] and let G’ = G —e.
Since |[e]| > 1 and since G is 2-edge-connected, G' is also 2-edge-connected.
Note that u(G') = p(G) — 1. By the minimality of G, we have c¢(G') <
n—1+ u(G'). Let C be a CDC of G' with |C| = cc(G') and let C,,C, € C
be the two cycles that contain ¢’. Thus by letting C; = C; — €' + ¢ and
F = G|{e,¢'}], we obtain a CDC (€ — {C;}) U {C;,F} of G and so by
p(G') = u(G) — 1, we have

cc(G) < cc(G") +1 < n— 1+ pu(G),
contrary to the assumption that G is a counterexample. O

For a planar multigraph G, G is a triangulation if there is a plane
embedding of G in which every face has degree 2 or 3. By an inductive
argument, we proved the following:

Theorem 6 ([6]) If G is a planar triangulation with n > 6 vertices, then

Theorem 7 ([5]) If G is a 2-edge-connected planar graph with n > 6
vertices, then

<
- 3 2

Some reduction techniques for planar graphs are developed in the in-
vestigation of conjecture SCCM. Lemma 8 below is a typical one of such
reduction lemmas.

Lemmma 8 ([6]) Let G be a graph and H = T; (see Figure 1) be a
subgraph of G such that the vertices of attachment of H in G are lying
in {v;,v3,v5}. Let e & E(G) be an edge parallel to vav;. Then let G' =
(G — Vg) + e; and we have

cc(G) < ce(G') + 1. (3)
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Figure1: The graph I’y

There are other similar reduction lemmas using deletion and/or con-
traction. These lemmas are used to reduce the order of a minimum coun-
terexample, and so we basically need to consider graphs with small orders
in the proofs of Theorems 4 and 5.

It is natural to approach these problems by considering the extremal
graphs. We restricted ourselves to graphs without subdivisions of Ky and
were able to characterize all extremal graphs within this family.

To describe these results, we introduce some terms. An arc of a graph
G is an (z,y)-path P of G with z,y € V(G) possibly z = y), such that all
internal vertices of P have degree 2 in G. A maximal arc is one that cannot
be extended in G. The length of an arc P is |[E(P)|. We regard K; as an
arc of length 1 and K; as an arc of length 0 (with identical ends).

Let A(G) denote the collection of all maximal arcs A with |E(4)] > 2.
For any A € A(G), A is a cycle arc if G[E(4)] is a cycle of G; A is a
cyclic arc if G{E(A)] is not a cycle but there is an arc A' in G such that
G[E(A)UE(A")] is a cycle; A is an acyclic arc if G is either a cycle arc nor
a cyclic arc.

For each A € A(G), define bg(A) as follows:

|E(A)| —3 if Ais acycle arc
bg(A) = { |E(A)]—2 if A is a cyclic arc
|E(A)] -1 if A is an acyclic arc
and define
b(G) = Z bg(A)-
AcA(G)
Lett > 3 and s; > ... > s3 > s; > 1 be integers. Let the t arcs of length
2 of K,, be labeled by A, A,, ..., A;. Define Ky4(sy,-..,s) to be the graph
obtained from K, by replacing A; by a path of length s;, (1 < ¢ <t). For
convenience, we regard a cycle of length s; + s; as a Kz 2(s), s2).
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Figure 2: K3 3(1,2,3).

Let K denote the collection of graphs such that G € K if and only if
each block of G is a K;3(1,s7,53), for some s3 > s, > 1. Let K’ denote
the subcollection of K such that G € K' if and only if each block of G is a
K33(1,2,2). Note that by definition, every graph in K is simple.

Theorem 9 (|7]) Let G be a 2-edge-connected simple graph with n ver-
tices. If G has no subdivision of K, then

 2n= 13- b(G)) "

where equality holds if and only if G € K. Moreover, if 4(G) = 0, then
equality holds in (2) if and only if G € K'.

c¢(G)

Let k be a nonnegative integer. Given graphs G, and Gy, if for 1 €
{1,2}, G; has an arc P; with |E(P;)| = k and with the ends of P; being
z;,v; € V(G,), then one can define the k-arc-sum of G, and G; to be the
graph obtained from the vertex disjoint union of G, and G, by deleting all
the internal vertices of P, and identifying z; with z; and y; with y;. Thus
the k-arc-sum of G; and G; contains G; and G, as subgraphs. If G is a
k-arc-sum of G; and G; with

|E(G)| < |E(G), (1 £7<2), (5)
then G is called a proper k-arc-sum of G; and G;.

If G is a proper 1-arc-sum of G} and Gz, then the edge e shared com-

monly by G, and G, is called a sum-edge of G. For each integer 1 >3,
define K () to be the family of simple graphs satisfying each of the follow-
ing:
(i) all k-cycles, 3 < k <4, are in K(z);
(ii) G € K(2) if and only if either G is a cycle of length at most t,or G
is a O-arc-sum or a l-arc-sum of G, and G, for some G;,G; € K (1), such
that every k-cycle of G, 3 < k < 1, has at most two sum-edges of G, and
such that if a k-cycle C has exactly two sum-edges in G, 3 < k < 1, then
these two sum-edges are adjacent in C.

Define K = U;ZsK(i).
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Theorem 10 ([9]) Let G be a 2-edge-connected simple graph with n
vertices. If G has no subdivision of Ky, then

s¢(G) < n—1-b(G), (6)

where equality holds if and only if G € K. Moreover, if b(G) = 0, then
equality holds in (2) if and only if G € K(3).

The proofs of both Theorems 8 and 9 depends on the following proposi-
tion, which can be derived from Dirac’s theorem ([4]) that if G is a nontrivial
simple graph without subdivision of K,, then §(G) < 2.

Proposition 11 ([9]) Let G be a nontrivial 2-edge-connected graph. If
G contains no subdivision of Ky, then either G is a cycle or G is a proper
k-arc-sum of some graphs G; and G, for some k < 0, with '(G;) > 2;

(1 < 1 £ 2). Moreover, if G is simple' and not a cycle, then both G, and
G, can be chosen as simple graphs.

In view of Theorem 4, we conclude this note with the following conjec-
ture:

. Conjecture: For any integer m > 0, there exists an integer N(m) such
that for any simple plane triangulation G with |V(G)| > N(m),

ce(G) £ 332 - m.
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