Group Connectivity of Graphs

Hong-Jian Lai

Department of Mathematics, West Virginia University

Contents:

■ Notations and Definitions

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses
■ Group Connectivity of Graphs: The Nonhomogeneous Case

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses

- Group Connectivity of Graphs: The Nonhomogeneous Case

■ Planar Graphs, Line Graphs, Highly Connected Graphs

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses

- Group Connectivity of Graphs: The Nonhomogeneous Case

■ Planar Graphs, Line Graphs, Highly Connected Graphs
■ Chordal Graphs, Graphs with Small Diameter.

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses

- Group Connectivity of Graphs: The Nonhomogeneous Case

■ Planar Graphs, Line Graphs, Highly Connected Graphs

- Chordal Graphs, Graphs with Small Diameter.

■ Triangulated Graphs

Contents:

■ Notations and Definitions
■ Nowhere Zero Flows: Conjectures and Progresses

- Group Connectivity of Graphs: The Nonhomogeneous Case

■ Planar Graphs, Line Graphs, Highly Connected Graphs
■ Chordal Graphs, Graphs with Small Diameter.

- Triangulated Graphs
- Disproof of Barat-Thomassen Conjecture

Notation:

■ $G:=$ a graph, with vertex set

$$
\begin{aligned}
& V=V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, \text { and edge set } \\
& E=E(G)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\} .
\end{aligned}
$$

Notation:

■ $G:=$ a graph, with vertex set

$$
\begin{aligned}
& V=V(G) \\
& E=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, \text { and edge set } \\
& E=E(G)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\} .
\end{aligned}
$$

$\square D(G):=$ an orientation of G.

Notation:

■ $G:=$ a graph, with vertex set

$$
\begin{aligned}
& V=V(G) \\
& E=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, \text { and edge set } \\
& E=E(G)=\left\{e_{1}, e_{2}, \cdots, e_{m}\right\} .
\end{aligned}
$$

$\square D(G):=$ an orientation of G.
■ $D=\left(d_{i j}\right)_{n \times m}:=$ vertex-edge incidence matrix, where

$$
d_{i j}= \begin{cases}1 & \text { if } e_{j} \text { is oriented away from } v_{i} \\ -1 & \text { if } e_{j} \text { is oriented into } v_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Notation

$\square A:=$ an abelian (additive) group with identity 0 , and with $|A| \geq 3$ and $A^{*}=A-\{0\}$.

Notation

- A : = an abelian (additive) group with identity 0 , and with $|A| \geq 3$ and $A^{*}=A-\{0\}$.
$■ F(G, A)=\{f: E \mapsto A\}$, and $F^{*}(G, A)=\left\{f: E \mapsto A^{*}\right\}$.

Notation

- A : = an abelian (additive) group with identity 0 , and with $|A| \geq 3$ and $A^{*}=A-\{0\}$.
$■ F(G, A)=\{f: E \mapsto A\}$, and $F^{*}(G, A)=\left\{f: E \mapsto A^{*}\right\}$.
$■$ A function $f: E \mapsto A$ can be viewed as an m-dimensional vector

$$
f=\left(f\left(e_{1}\right), f\left(e_{2}\right), \cdots, f\left(e_{m}\right)\right)^{T} .
$$

Notation

- A : = an abelian (additive) group with identity 0 , and with $|A| \geq 3$ and $A^{*}=A-\{0\}$.
■ $F(G, A)=\{f: E \mapsto A\}$, and $F^{*}(G, A)=\left\{f: E \mapsto A^{*}\right\}$.
■ A function $f: E \mapsto A$ can be viewed as an m-dimensional vector

$$
f=\left(f\left(e_{1}\right), f\left(e_{2}\right), \cdots, f\left(e_{m}\right)\right)^{T} .
$$

■ A function $b: V \mapsto A$ can be viewed as an n-dimensional vector

$$
b=\left(b\left(v_{1}\right), b\left(v_{2}\right), \cdots, b\left(v_{n}\right)\right)^{T} .
$$

Nowhere-zero A-flows (or A-NZFs)

■ Assumption: For any graph G, we assume that a fixed orientation $D(G)$ of G is given.
Notation: $\forall a \in A, 1 \cdot a=a,(-1) \cdot a=-a$ (additive inverse of a in A), and $0 \cdot a=0$ (additive identity of A)

Nowhere-zero A-flows (or A-NZFs)

■ Assumption: For any graph G, we assume that a fixed orientation $D(G)$ of G is given.
Notation: $\forall a \in A, 1 \cdot a=a,(-1) \cdot a=-a$ (additive inverse of a in A), and $0 \cdot a=0$ (additive identity of A)
$■$ For any $f \in F(G, A)$, the boundary of f is $\partial f:=D f$. That is, $\forall v_{i} \in V, \partial f\left(v_{i}\right)=D f\left(v_{i}\right)$, which is the v_{i} th component of the vector $D f$.

Nowhere-zero A-flows (or A-NZFs)

■ Assumption: For any graph G, we assume that a fixed orientation $D(G)$ of G is given.
Notation: $\forall a \in A, 1 \cdot a=a,(-1) \cdot a=-a$ (additive inverse of a in A), and $0 \cdot a=0$ (additive identity of A)
$■$ For any $f \in F(G, A)$, the boundary of f is $\partial f:=D f$. That is, $\forall v_{i} \in V, \partial f\left(v_{i}\right)=D f\left(v_{i}\right)$, which is the v_{i} th component of the vector $D f$.

■ A function $f \in F^{*}(G, A)$ is a nowhere-zero A-flow (or just an A-NZF) if $D f=\mathbf{0}$ (the all zero vector).

Integer Flows

$\square \mathrm{Z}:=$ the abelian group of integers.

Integer Flows

$\square \mathrm{Z}:=$ the abelian group of integers.
$\square \mathrm{Z}_{k}$: = the abelian group of mod k integers.

Integer Flows

$\square \mathrm{Z}:=$ the abelian group of integers.
$\square \mathrm{Z}_{k}$: = the abelian group of mod k integers.
■ A function $f \in F^{*}(G, \mathbf{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if $D f=\mathbf{0}$, and if $\forall e \in E(G)$,

$$
0<|f(e)|<k
$$

Integer Flows

$\square \mathrm{Z}:=$ the abelian group of integers.
$\square \mathrm{Z}_{k}$: = the abelian group of mod k integers.
■ A function $f \in F^{*}(G, \mathbf{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if $D f=\mathbf{0}$, and if $\forall e \in E(G)$, $0<|f(e)|<k$.
■ Tutte: If G has a k-NZF, then G has a $(k+1)$-NZF.

Integer Flows

$\square \mathrm{Z}:=$ the abelian group of integers.
$\square \mathrm{Z}_{k}$: = the abelian group of mod k integers.
■ A function $f \in F^{*}(G, \mathbf{Z})$ is a nowhere-zero k-flow (or just a k-NZF) if $D f=\mathbf{0}$, and if $\forall e \in E(G)$,

$$
0<|f(e)|<k
$$

■ Tutte: If G has a k-NZF, then G has a $(k+1)$-NZF.
■ Tutte: A graph G has an A-NZF if and only if G has an $|A|-N Z F$.

Some Properties

- If some orientation $D(G)$ has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-MZF or a k-NZF is independent of the choice of the orientation.

Some Properties

- If some orientation $D(G)$ has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-MZF or a k-NZF is independent of the choice of the orientation.
- If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).

Some Properties

- If some orientation $D(G)$ has an A-NZF or a k-NZF, then for any orientation of G also has the same property, and so having an A-MZF or a k-NZF is independent of the choice of the orientation.
- If for an abelian group A, a connected graph G has an A-NZF, then G must be 2-edge-connected. (That is, G does not have a cut edge).

■ We shall only consider 2-edge-connected graphs G and define

$$
\Lambda(G)=\min \{k: G \text { has a } k-N Z F\} .
$$

Group Connectivity of Graphs - p. 7/31

Tutte's Conjectures

■ (5-flow) Every 2-edge-connected graph has a 5-NZF.

Tutte's Conjectures

■ (5-flow) Every 2-edge-connected graph has a 5-NZF.
■ (4-flow) Every 2-edge-connected graph without a subgraph contractible to P_{10}, the Petersen graph, must have a 4-NZF.

Tutte's Conjectures

■ (5-flow) Every 2-edge-connected graph has a 5-NZF.
■ (4-flow) Every 2-edge-connected graph without a subgraph contractible to P_{10}, the Petersen graph, must have a 4-NZF.

■ (3-flow) Every 4-edge-connected graph has a 3-NZF.

Tutte's Conjectures

■ (5-flow) Every 2-edge-connected graph has a 5-NZF.
■ (4-flow) Every 2-edge-connected graph without a subgraph contractible to P_{10}, the Petersen graph, must have a 4-NZF.

■ (3-flow) Every 4-edge-connected graph has a 3-NZF.
■ (Jaeger's weak 3 -flow conjecture) There exists an integer $k>0$ such that every k-edge-connected graph has a 3-NZF.

Nowhere zero flows and colorings

■ Tutte: For a plane graph G, G has a face k-coloring if and only if G has a k-NZF.

Nowhere zero flows and colorings

■ Tutte: For a plane graph G, G has a face k-coloring if and only if G has a k-NZF.

- These conjectures are theorems when restricted to planar graphs (need 4 Color Theorem for the 4-flow conjecture).

What do we know?

■ Jaeger (1979, JCT(B)): Every 2-edge-connected graph has a 8-NZF.

What do we know?

■ Jaeger (1979, JCT(B)): Every 2-edge-connected graph has a 8-NZF.

■ Jaeger (1979, JCT(B)): Every 4-edge-connected graph has a 4-NZF.

What do we know?

■ Jaeger (1979, JCT(B)): Every 2-edge-connected graph has a 8-NZF.

■ Jaeger (1979, JCT(B)): Every 4-edge-connected graph has a 4-NZF.

■ Seymour (1980, JCT(B)): Every 2-edge-connected graph has a 6-NZF.

What do we know?

■ Jaeger (1979, JCT(B)): Every 2-edge-connected graph has a 8-NZF.

■ Jaeger (1979, JCT(B)): Every 4-edge-connected graph has a 4-NZF.

■ Seymour (1980, JCT(B)): Every 2-edge-connected graph has a 6-NZF.

- The 5 -flow conjecture and 3 -flow conjecture have also been verified for projective planes and some other surfaces.

What do we know?

■ Robertson, Sanders, Seymour, Thomas (2000): Every 2-edge-connected cubic graph without a subgraph contractible to the Petersen graph has a 4-NZF.

What do we know?

- Robertson, Sanders, Seymour, Thomas (2000): Every 2-edge-connected cubic graph without a subgraph contractible to the Petersen graph has a 4-NZF.

■ C. Q. Zhang and HJL (1992, DM): Every $4 \log _{2}(|V(G)|)$-edge-connected graph has a 3-NZF.

What do we know?

- Robertson, Sanders, Seymour, Thomas (2000): Every 2-edge-connected cubic graph without a subgraph contractible to the Petersen graph has a 4-NZF.

■ C. Q. Zhang and HJL (1992, DM): Every $4 \log _{2}(|V(G)|)$-edge-connected graph has a 3-NZF.

■ Y. Shao, H. Wu, J. Zhou and HJL (2008, JCT(B)): Every $3 \log _{2}(|V(G)|)$-edge-connected graph has a 3-NZF.

What do we know?

- Robertson, Sanders, Seymour, Thomas (2000): Every 2-edge-connected cubic graph without a subgraph contractible to the Petersen graph has a 4-NZF.
■ C. Q. Zhang and HJL (1992, DM): Every $4 \log _{2}(|V(G)|)$-edge-connected graph has a 3-NZF.

■ Y. Shao, H. Wu, J. Zhou and HJL (2008, JCT(B)): Every $3 \log _{2}(|V(G)|)$-edge-connected graph has a 3-NZF.

- Z. H. Chen, H. Y. Lai and HJL (2002, DM): Tutte's flow conjectures are valid if and only if they are valid within line graphs.

The Nonhomogeneous Case

- Given an orientation $D(G)$ with incidence matrix D, G has an A-NZF $\Leftrightarrow D f=0$ has a nowhere zero solution $f \in F^{*}(G, A)$.

The Nonhomogeneous Case

■ Given an orientation $D(G)$ with incidence matrix D, G has an A-NZF $\Leftrightarrow D f=0$ has a nowhere zero solution $f \in F^{*}(G, A)$.
■ If $f \in F(G, A)$ and $b=\partial f$. Then

$$
\sum_{v \in V(G)} b(v)=\sum_{v \in V(G)} \partial f(v)=0 .
$$

The Nonhomogeneous Case

- Given an orientation $D(G)$ with incidence matrix D, G has an A-NZF $\Leftrightarrow D f=0$ has a nowhere zero solution $f \in F^{*}(G, A)$.
■ If $f \in F(G, A)$ and $b=\partial f$. Then

$$
\sum_{v \in V(G)} b(v)=\sum_{v \in V(G)} \partial f(v)=0 .
$$

- Any $b: V \mapsto A$ with $\sum_{v \in V(G)} b(v)=0$ is an A-zero-sum function. The set of all A-zero-sum functions is $Z(G, A)$.

Group connectivity of a graph

\square For a function $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ satisfying $D f=b$ is an (A, b)-NZF of G.

Group connectivity of a graph

■ For a function $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ satisfying $D f=b$ is an (A, b)-NZF of G.
\square If $\forall b \in Z(G, A), G$ has an (A, b)-NZF, then G is A-connected.

Group connectivity of a graph

■ For a function $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ satisfying $D f=b$ is an (A, b)-NZF of G.

■ If $\forall b \in Z(G, A), G$ has an (A, b)-NZF, then G is A-connected.

- For a 2-edge-connected graph $G, \Lambda_{g}(G)=\min \{k: G$ is A-connected, for every abelian group A with $|A| \geq k\}$.

Group connectivity of a graph

■ For a function $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ satisfying $D f=b$ is an (A, b)-NZF of G.

■ If $\forall b \in Z(G, A), G$ has an (A, b)-NZF, then G is A-connected.

- For a 2-edge-connected graph $G, \Lambda_{g}(G)=\min \{k: G$ is A-connected, for every abelian group A with $|A| \geq k\}$.
$■ \Lambda(G) \leq \Lambda_{g}(G)$.

New Results

$■$ Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 6$.

New Results

$■$ Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 6$.

■ Jeager et al (1992): If G is a 4-edge-connected graph, then $\Lambda_{g}(G) \leq 4$.

New Results

■ Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 6$.
$■$ Jeager et al (1992): If G is a 4-edge-connected graph, then $\Lambda_{g}(G) \leq 4$.

■ Jeager et al (1992) and HJL (1998): For the n-cycle $C_{n}, \Lambda_{g}\left(C_{n}\right)=n+1$.

New Conjectures (JCT(B),1992)

\square Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 5$.

New Conjectures (JCT(B),1992)

■ Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 5$.
$■$ Jeager et al (1992): If G is a 5 -edge-connected graph, then $\Lambda_{g}(G) \leq 3$.

New Conjectures (JCT(B),1992)

■ Jeager et al (1992): If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 5$.
$■$ Jeager et al (1992): If G is a 5 -edge-connected graph, then $\Lambda_{g}(G) \leq 3$.

■ Jeager et al (1992): There exists an integer $k>0$ such that if G is a k-edge-connected graph, then $\Lambda_{g}(G) \leq 3$.

Planar Graphs

- X. Zhang and HJL, (2000, GC): If G is a 3-edge-connected planar graph, then $\Lambda_{g}(G) \leq 5$.

Planar Graphs

- X. Zhang and HJL, (2000, GC): If G is a 3-edge-connected planar graph, then $\Lambda_{g}(G) \leq 5$.
- Kral, Pangrac and Voss, (2006, JGT): There exists a family of 3-edge-connected planar graphs G with $\Lambda_{g}(G)=5$.

Planar Graphs

- X. Zhang and HJL, (2000, GC): If G is a 3-edge-connected planar graph, then $\Lambda_{g}(G) \leq 5$.
- Kral, Pangrac and Voss, (2006, JGT): There exists a family of 3-edge-connected planar graphs G with $\Lambda_{g}(G)=5$.
$■$ X. Li and HJL, (2006, JGT): If G is a 5-edge-connected planar graph, then $\Lambda_{g}(G) \leq 3$.

Planar Graphs

- X. Zhang and HJL, (2000, GC): If G is a 3-edge-connected planar graph, then $\Lambda_{g}(G) \leq 5$.
- Kral, Pangrac and Voss, (2006, JGT): There exists a family of 3-edge-connected planar graphs G with $\Lambda_{g}(G)=5$.
$■$ X. Li and HJL, (2006, JGT): If G is a 5-edge-connected planar graph, then $\Lambda_{g}(G) \leq 3$.
■ Kral, Pangrac and Voss, (2006, JGT): There exists a family of 4-edge-connected planar graphs G with $\Lambda_{g}(G)=4$.

Line Graphs and Highly Connected Graphs

■ The line graph of G is $L(G)$, with $V(L(G))=E(G)$, where two vertices are adjacent in $L(G)$ iff corresponding edges are adjacent in G.

Line Graphs and Highly Connected Graphs

■ The line graph of G is $L(G)$, with $V(L(G))=E(G)$, where two vertices are adjacent in $L(G)$ iff corresponding edges are adjacent in G.

■ Z. Chen, H. Y. Lai and HJL (2002, DM): Tutte's 3-flow conjecture holds if and only if every 4-edge-connected line graph has a 3-NZF.

Line Graphs and Highly Connected Graphs

■ The line graph of G is $L(G)$, with $V(L(G))=E(G)$, where two vertices are adjacent in $L(G)$ iff corresponding edges are adjacent in G.

■ Z. Chen, H. Y. Lai and HJL (2002, DM): Tutte's 3-flow conjecture holds if and only if every 4-edge-connected line graph has a 3-NZF.

■ Y. Shao and HJL(2008, EJC): If G is a
4-edge-connected graph, then $\Lambda_{g}(L(G)) \leq 3$.

Line Graphs and Highly Connected Graphs

- The line graph of G is $L(G)$, with $V(L(G))=E(G)$, where two vertices are adjacent in $L(G)$ iff corresponding edges are adjacent in G.

■ Z. Chen, H. Y. Lai and HJL (2002, DM): Tutte's 3-flow conjecture holds if and only if every 4-edge-connected line graph has a 3-NZF.

■ Y. Shao and HJL(2008, EJC): If G is a
4-edge-connected graph, then $\Lambda_{g}(L(G)) \leq 3$.
\square Y. Shao, H. Wu, J. Zhou and HJL(2008, JCT(B)): If G is $3 \log _{2}(|V(G)|)$-edge-connected, then $\Lambda_{g}(L(G)) \leq 3$.

Complete Bipartite Graphs

J. Chen, E. Eschen and HJL (2008, Ars Comb): Let $m \geq n \geq 2$ be integers. Then

$$
\Lambda_{g}\left(K_{m, n}\right)= \begin{cases}5 & \text { if } n=2 \\ 4 & \text { if } n=3 \\ 3 & \text { if } n \geq 4\end{cases}
$$

Let G be a graph with $u^{\prime} v^{\prime} \in E(G)$ and H be a graph with $u v \in E(H) . G \oplus H$ denotes the graph obtained from the disjoint union of $G-\left\{u^{\prime} v^{\prime}\right\}$ and H by identifying u^{\prime} and u and identifying v^{\prime} and v.

Chordal Graphs:

- A graph G is chordal is every induced cycle C of length at least 4 has a chord, an edge $e \in E(G)-E(C)$ both of whose ends are on $V(C)$.

Chordal Graphs:

- A graph G is chordal is every induced cycle C of length at least 4 has a chord, an edge $e \in E(G)-E(C)$ both of whose ends are on $V(C)$.
■ As examples, all complete graphs or order at least 3 are chordal.

Chordal Graphs:

- A graph G is chordal is every induced cycle C of length at least 4 has a chord, an edge $e \in E(G)-E(C)$ both of whose ends are on $V(C)$.

■ As examples, all complete graphs or order at least 3 are chordal.

■ Problem: Determine the group connectivity of chordal graphs.

Chordal Graphs: (J. Chen, E. Eschen and HJL)

■ If G is a connected chordal graph, then $\Lambda_{g}(G) \leq 4$.

Chordal Graphs: (J. Chen, E. Eschen and HJL)

- If G is a connected chordal graph, then $\Lambda_{g}(G) \leq 4$.

■ If G is a 4-edge-connected chordal graph, then
$\Lambda_{g}(G) \leq 3$.

Chordal Graphs: (J. Chen, E. Eschen and HJL)

- If G is a connected chordal graph, then $\Lambda_{g}(G) \leq 4$.

■ If G is a 4-edge-connected chordal graph, then $\Lambda_{g}(G) \leq 3$.

- Let G be a 3-connected chordal graph. Then $\Lambda_{g}(G)=3$ if and only if $G \not \approx K_{4}$.

Chordal Graphs: (J. Chen, E. Eschen and HJL)

- If G is a connected chordal graph, then $\Lambda_{g}(G) \leq 4$.

■ If G is a 4-edge-connected chordal graph, then $\Lambda_{g}(G) \leq 3$.
\square Let G be a 3-connected chordal graph. Then $\Lambda_{g}(G)=3$ if and only if $G \not \approx K_{4}$.
\square Let G be 2-connected (but not 3-connected) chordal graph. Then $\Lambda_{g}(G)=4$ if and only if $G \in\left\{K_{3}, K_{4}\right\}$ or G has two subgraphs G_{1} and G_{2} such that both $\Lambda_{g}\left(G_{1}\right)$ and $\Lambda_{g}\left(G_{2}\right)$ are 4, and such that $G=G_{1} \oplus G_{2}$.

Graphs with Diameter at most 2

■ H.-J. Lai (1992, JGT): If G is a 2-edge-connected graph with diameter at most 2 , then $\Lambda(G) \leq 5$, where equality holds if and only if $G=P_{10}$, the Petersen graph.

Graphs with Diameter at most 2

■ H.-J. Lai (1992, JGT): If G is a 2-edge-connected graph with diameter at most 2 , then $\Lambda(G) \leq 5$, where equality holds if and only if $G=P_{10}$, the Petersen graph.

- X. Yao and HJL (2006, EJC): If G is a

2-edge-connected graph with diameter at most 2, then
(i) $\Lambda(G) \leq 6$, and $\Lambda_{g}(G)=6$ if and only if $G=C_{5}$.
(ii) If $G \neq C_{5}$, then $\Lambda_{g}(G) \leq 5$, where equality holds if and only if $G=P_{10}$, the Petersen graph, or $G \in\left\{S_{m, n}, K_{2, n}\right\}$.

Graphs with Diameter at most 2

Group Connectivity of Graphs - p. 22/31

Triangulated Graphs

\square A G is triangulated if every edge of G lies in a cycle of length at most 3 in G.

Triangulated Graphs

\square A G is triangulated if every edge of G lies in a cycle of length at most 3 in G.

■ Conjecture (Xu and Zhang, 2002) If G is a 4-edge-connected triangulated graph, then $\Lambda(G) \leq 3$.

Triangulated Graphs

\square A G is triangulated if every edge of G lies in a cycle of length at most 3 in G.

■ Conjecture (Xu and Zhang, 2002) If G is a 4-edge-connected triangulated graph, then $\Lambda(G) \leq 3$.

■ Conjecture (Davos, 2003) If G is a 4-edge-connected triangulated graph, then $\Lambda_{g}(G) \leq 3$.

Triangulated Graphs

Xu, Zhou and HJL (2008 GC) found an infinite family of 4-edge-connected triangulated graphs G with $\Lambda_{g}(G)=4$.

Group Connectivity of Graphs - p. 24/31

Triangulated Graphs

- A G is triangularly connected if every pair of edges of G are joined by a sequence of consecutively intersecting 3 -cycles in G.

Triangulated Graphs

■ A G is triangularly connected if every pair of edges of G are joined by a sequence of consecutively intersecting 3-cycles in G.

■ Theorem (Fan, Xu, Zhang, Zhou and HJL, 2008, JCT(B)) If G is a triangularly-connected graph, then $\Lambda_{g}(G) \leq 3$ iff G cannot be obtained by a sequence of parallel connections from fans and/or odd wheels.

Triangulated Graphs

- A G is triangularly connected if every pair of edges of G are joined by a sequence of consecutively intersecting 3 -cycles in G.

■ Theorem (Fan, Xu, Zhang, Zhou and HJL, 2008, JCT(B)) If G is a triangularly-connected graph, then $\Lambda_{g}(G) \leq 3$ iff G cannot be obtained by a sequence of parallel connections from fans and/or odd wheels.
\square Corollary If G is a 3 -edge-connected, triangularly-connected graph, then $\Lambda_{g}(G) \leq 3$.

Barat-Thomassen's Approach

■ A graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition if $E(G)$ is a disjoint union $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized claw.

Barat-Thomassen's Approach

■ A graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition if $E(G)$ is a disjoint union $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized claw.

■ Theorem (Barat and Thomassen, 2006, JGT) There exists a function $f(k)$ such that If every k-edge-connected graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition, then every $f(k)$-edge-connected graph G has a 3-NZF.

Barat-Thomassen's Approach

■ Conjecture (Barat and Thomassen, 2006, JGT) Every 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw-decomposition.

Counterexample

■ (HJL, SIAM J of DM, 2007) An infinite family of 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ is constructed which does not have a $K_{1,3}$-decomposition.

Group Connectivity of Graphs - p. 28/31

Justification

\square Suppose G has a claw-decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$, and let $D=D(\mathcal{X})$ (All edges oriented towards the center of the claw).

Justification

■ Suppose G has a claw-decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$, and let $D=D(\mathcal{X})$ (All edges oriented towards the center of the claw).
$■ \forall v \in V(G),\left|E_{D}^{+}(v)\right| \in\{0,3\}$. As $|V(G)|=24 k$ and $|E(G)|=48 k$, so G has $m=48 k / 3=16 k$ edge-disjoint claws.

Justification

\square Suppose G has a claw-decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$, and let $D=D(\mathcal{X})$ (All edges oriented towards the center of the claw).

■ $\forall v \in V(G),\left|E_{D}^{+}(v)\right| \in\{0,3\}$. As $|V(G)|=24 k$ and $|E(G)|=48 k$, so G has $m=48 k / 3=16 k$ edge-disjoint claws.

■ Let $H_{i}(i=1,2, \ldots, 3 k$ denote a "building block".

Justification

\square Let $W=\left\{v\right.$ with $\left.\left|E_{D}^{+}(v)\right|=0\right\}$. Then $|W|=|V(G)|-m=24 k-16 k=8 k$.

Group Connectivity of Graphs - p. 30/31

Justification

\square Let $W=\left\{v\right.$ with $\left.\left|E_{D}^{+}(v)\right|=0\right\}$. Then $|W|=|V(G)|-m=24 k-16 k=8 k$.
\square No two vertices in W can be adjacent in G, and so for each $i(\bmod 3 k),\left|W \cap V\left(H_{i} \cup H_{i+1}-\left\{y_{i+1}\right\}\right)\right| \leq 5$.

Justification

\square Let $W=\left\{v\right.$ with $\left.\left|E_{D}^{+}(v)\right|=0\right\}$. Then

$$
|W|=|V(G)|-m=24 k-16 k=8 k .
$$

■ No two vertices in W can be adjacent in G, and so for each $i(\bmod 3 k),\left|W \cap V\left(H_{i} \cup H_{i+1}-\left\{y_{i+1}\right\}\right)\right| \leq 5$.
$■ 16 k=2|W|=\sum_{i=1}^{3 k}\left|V\left(H_{i} \cup H_{i+1}-\left\{y_{i+1}\right\}\right) \cap W\right| \leq$ $5 \times 3 k=15 k$, a contradiction.

Thank You!

Group Connectivity of Graphs - p. 31/31

