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Notation:

G: = a graph, with vertex set
V = V (G) = {v1, v2, · · · , vn}, and edge set
E = E(G) = {e1, e2, · · · , em}.

D(G): = an orientation of G.

D = (dij)n×m := vertex-edge incidence matrix, where

dij =















1 if ej is oriented away from vi

−1 if ej is oriented into vi

0 otherwise
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Notation

A: = an abelian (additive) group with identity 0, and
with |A| ≥ 3 and A∗ = A − {0}.

F (G,A) = {f : E 7→ A}, and F ∗(G,A) = {f : E 7→ A∗}.

A function f : E 7→ A can be viewed as an
m-dimensional vector

f = (f(e1), f(e2), · · · , f(em))T .

A function b : V 7→ A can be viewed as an
n-dimensional vector

b = (b(v1), b(v2), · · · , b(vn))T .
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Nowhere-zero A-flows (or
A-NZFs)

Assumption: For any graph G, we assume that a fixed
orientation D(G) of G is given.
Notation: ∀a ∈ A, 1 · a = a, (−1) · a = −a (additive
inverse of a in A), and 0 · a = 0 (additive identity of A)

For any f ∈ F (G,A), the boundary of f is ∂f := Df .
That is, ∀vi ∈ V, ∂f(vi) = Df(vi), which is the vith
component of the vector Df .

A function f ∈ F ∗(G,A) is a nowhere-zero A-flow (or
just an A-NZF) if Df = 0 (the all zero vector).
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Integer Flows

Z: = the abelian group of integers.

Zk: = the abelian group of mod k integers.

A function f ∈ F ∗(G,Z) is a nowhere-zero k-flow (or
just a k-NZF) if Df = 0, and if ∀e ∈ E(G),
0 < |f(e)| < k.

Tutte: If G has a k-NZF, then G has a (k + 1)-NZF.

Tutte: A graph G has an A-NZF if and only if G has an
|A|-NZF.
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Some Properties

If some orientation D(G) has an A-NZF or a k-NZF,
then for any orientation of G also has the same
property, and so having an A-MZF or a k-NZF is
independent of the choice of the orientation.

If for an abelian group A, a connected graph G has an
A-NZF, then G must be 2-edge-connected. (That is, G

does not have a cut edge).

We shall only consider 2-edge-connected graphs G

and define

Λ(G) = min{k : G has a k − NZF}.
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Tutte’s Conjectures

(5-flow) Every 2-edge-connected graph has a 5-NZF.

(4-flow) Every 2-edge-connected graph without a
subgraph contractible to P10, the Petersen graph, must
have a 4-NZF.

(3-flow) Every 4-edge-connected graph has a 3-NZF.

(Jaeger’s weak 3-flow conjecture) There exists an
integer k > 0 such that every k-edge-connected graph
has a 3-NZF.
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Nowhere zero flows and
colorings

Tutte: For a plane graph G, G has a face k-coloring if
and only if G has a k-NZF.

These conjectures are theorems when restricted to
planar graphs (need 4 Color Theorem for the 4-flow
conjecture).
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What do we know?

Jaeger (1979, JCT(B)): Every 2-edge-connected graph
has a 8-NZF.

Jaeger (1979, JCT(B)): Every 4-edge-connected graph
has a 4-NZF.

Seymour (1980, JCT(B)): Every 2-edge-connected
graph has a 6-NZF.

The 5-flow conjecture and 3-flow conjecture have also
been verified for projective planes and some other
surfaces.
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What do we know?

Robertson, Sanders, Seymour, Thomas (2000): Every
2-edge-connected cubic graph without a subgraph
contractible to the Petersen graph has a 4-NZF.

C. Q. Zhang and HJL (1992, DM): Every
4log2(|V (G)|)-edge-connected graph has a 3-NZF.

Y. Shao, H. Wu, J. Zhou and HJL (2008, JCT(B)):
Every 3log2(|V (G)|)-edge-connected graph has a
3-NZF.

Z. H. Chen, H. Y. Lai and HJL (2002, DM): Tutte’s flow
conjectures are valid if and only if they are valid within
line graphs.
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The Nonhomogeneous Case

Given an orientation D(G) with incidence matrix D, G

has an A-NZF ⇔ Df = 0 has a nowhere zero solution
f ∈ F ∗(G,A).

If f ∈ F (G,A) and b = ∂f . Then
∑

v∈V (G)

b(v) =
∑

v∈V (G)

∂f(v) = 0.

Any b : V 7→ A with
∑

v∈V (G) b(v) = 0 is an A-zero-sum
function. The set of all A-zero-sum functions is
Z(G,A).
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Group connectivity of a graph

For a function b ∈ Z(G,A), a function f ∈ F ∗(G,A)

satisfying Df = b is an (A, b)-NZF of G.

If ∀b ∈ Z(G,A), G has an (A, b)-NZF, then G is
A-connected.

For a 2-edge-connected graph G, Λg(G) = min{k : G is
A-connected, for every abelian group A with |A| ≥ k }.

Λ(G) ≤ Λg(G).
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New Results

Jeager et al (1992): If G is a 3-edge-connected graph,
then Λg(G) ≤ 6.

Jeager et al (1992): If G is a 4-edge-connected graph,
then Λg(G) ≤ 4.

Jeager et al (1992) and HJL (1998): For the n-cycle
Cn, Λg(Cn) = n + 1.
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New Conjectures (JCT(B),1992)

Jeager et al (1992): If G is a 3-edge-connected graph,
then Λg(G) ≤ 5.

Jeager et al (1992): If G is a 5-edge-connected graph,
then Λg(G) ≤ 3.

Jeager et al (1992): There exists an integer k > 0 such
that if G is a k-edge-connected graph, then Λg(G) ≤ 3.
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Planar Graphs

X. Zhang and HJL, (2000, GC): If G is a
3-edge-connected planar graph, then Λg(G) ≤ 5.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 3-edge-connected planar graphs G with
Λg(G) = 5.

X. Li and HJL, (2006, JGT): If G is a 5-edge-connected
planar graph, then Λg(G) ≤ 3.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 4-edge-connected planar graphs G with
Λg(G) = 4.

Group Connectivity of Graphs – p. 16/31



Planar Graphs

X. Zhang and HJL, (2000, GC): If G is a
3-edge-connected planar graph, then Λg(G) ≤ 5.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 3-edge-connected planar graphs G with
Λg(G) = 5.

X. Li and HJL, (2006, JGT): If G is a 5-edge-connected
planar graph, then Λg(G) ≤ 3.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 4-edge-connected planar graphs G with
Λg(G) = 4.

Group Connectivity of Graphs – p. 16/31



Planar Graphs

X. Zhang and HJL, (2000, GC): If G is a
3-edge-connected planar graph, then Λg(G) ≤ 5.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 3-edge-connected planar graphs G with
Λg(G) = 5.

X. Li and HJL, (2006, JGT): If G is a 5-edge-connected
planar graph, then Λg(G) ≤ 3.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 4-edge-connected planar graphs G with
Λg(G) = 4.

Group Connectivity of Graphs – p. 16/31



Planar Graphs

X. Zhang and HJL, (2000, GC): If G is a
3-edge-connected planar graph, then Λg(G) ≤ 5.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 3-edge-connected planar graphs G with
Λg(G) = 5.

X. Li and HJL, (2006, JGT): If G is a 5-edge-connected
planar graph, then Λg(G) ≤ 3.

Kral, Pangrac and Voss, (2006, JGT): There exists a
family of 4-edge-connected planar graphs G with
Λg(G) = 4.

Group Connectivity of Graphs – p. 16/31



Line Graphs and Highly
Connected Graphs

The line graph of G is L(G), with V (L(G)) = E(G),
where two vertices are adjacent in L(G) iff
corresponding edges are adjacent in G.

Z. Chen, H. Y. Lai and HJL (2002, DM): Tutte’s 3-flow
conjecture holds if and only if every 4-edge-connected
line graph has a 3-NZF.

Y. Shao and HJL(2008, EJC): If G is a
4-edge-connected graph, then Λg(L(G)) ≤ 3.

Y. Shao, H. Wu, J. Zhou and HJL(2008, JCT(B)): If G is
3log2(|V (G)|)-edge-connected, then Λg(L(G)) ≤ 3.
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Complete Bipartite Graphs

J. Chen, E. Eschen and HJL (2008, Ars Comb): Let
m ≥ n ≥ 2 be integers. Then

Λg(Km,n) =















5 if n = 2

4 if n = 3

3 if n ≥ 4

.

Let G be a graph with u′v′ ∈ E(G) and H be a graph with
uv ∈ E(H). G ⊕ H denotes the graph obtained from the
disjoint union of G − {u′v′} and H by identifying u′ and u

and identifying v′ and v.
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Chordal Graphs:

A graph G is chordal is every induced cycle C of length
at least 4 has a chord, an edge e ∈ E(G) − E(C) both
of whose ends are on V (C).

As examples, all complete graphs or order at least 3
are chordal.

Problem: Determine the group connectivity of chordal
graphs.
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Chordal Graphs: (J. Chen, E.
Eschen and HJL)

If G is a connected chordal graph, then Λg(G) ≤ 4.

If G is a 4-edge-connected chordal graph, then
Λg(G) ≤ 3.

Let G be a 3-connected chordal graph. Then Λg(G) = 3

if and only if G 6∼= K4.

Let G be 2-connected (but not 3-connected) chordal
graph. Then Λg(G) = 4 if and only if G ∈ {K3,K4} or G

has two subgraphs G1 and G2 such that both Λg(G1)

and Λg(G2) are 4, and such that G = G1 ⊕ G2.
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Graphs with Diameter at most
2

H.-J. Lai (1992, JGT): If G is a 2-edge-connected graph
with diameter at most 2, then Λ(G) ≤ 5, where equality
holds if and only if G = P10, the Petersen graph.

X. Yao and HJL (2006, EJC): If G is a
2-edge-connected graph with diameter at most 2, then
(i) Λ(G) ≤ 6, and Λg(G) = 6 if and only if G = C5.
(ii) If G 6= C5, then Λg(G) ≤ 5, where equality holds if
and only if G = P10, the Petersen graph, or
G ∈ {Sm,n,K2,n}.
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Graphs with Diameter at most 2
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Triangulated Graphs

A G is triangulated if every edge of G lies in a cycle of
length at most 3 in G.

Conjecture (Xu and Zhang, 2002) If G is a
4-edge-connected triangulated graph, then Λ(G) ≤ 3.

Conjecture (Davos, 2003) If G is a 4-edge-connected
triangulated graph, then Λg(G) ≤ 3.
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Triangulated Graphs

Xu, Zhou and HJL (2008 GC) found an infinite family of
4-edge-connected triangulated graphs G with Λg(G) = 4.
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Triangulated Graphs

A G is triangularly connected if every pair of edges of G

are joined by a sequence of consecutively intersecting
3-cycles in G.

Theorem (Fan, Xu, Zhang, Zhou and HJL, 2008, JCT(B)) If G is
a triangularly-connected graph, then Λg(G) ≤ 3 iff G

cannot be obtained by a sequence of parallel
connections from fans and/or odd wheels.

Corollary If G is a 3-edge-connected,
triangularly-connected graph, then Λg(G) ≤ 3.
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Barat-Thomassen’s Approach

A graph G with |E(G)| ≡ 0 (mod 3) has a
claw-decomposition if E(G) is a disjoint union
E(G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for each i with
1 ≤ i ≤ k, G[Xi] is a generalized claw.

Theorem (Barat and Thomassen, 2006, JGT) There exists a
function f(k) such that If every k-edge-connected
graph G with |E(G)| ≡ 0 (mod 3) has a
claw-decomposition, then every f(k)-edge-connected
graph G has a 3-NZF.
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Barat-Thomassen’s Approach

Conjecture (Barat and Thomassen, 2006, JGT) Every
4-edge-connected simple planar graph G with
|E(G)| ≡ 0 (mod 3) has a claw-decomposition.
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Counterexample

(HJL, SIAM J of DM, 2007) An infinite family of
4-edge-connected simple planar graph G with
|E(G)| ≡ 0 (mod 3) is constructed which does not have
a K1,3-decomposition.
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Justification

Suppose G has a claw-decomposition
X = {X1, X2, · · · , Xm}, and let D = D(X ) (All edges
oriented towards the center of the claw).

∀v ∈ V (G), |E+
D(v)| ∈ {0, 3}. As |V (G)| = 24k and

|E(G)| = 48k, so G has m = 48k/3 = 16k edge-disjoint
claws.

Let Hi (i = 1, 2, ..., 3k denote a "building block".
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Justification

Let W = {v with |E+
D(v)| = 0}. Then

|W | = |V (G)| − m = 24k − 16k = 8k.

No two vertices in W can be adjacent in G, and so for
each i (mod 3k), |W ∩ V (Hi ∪ Hi+1 − {yi+1})| ≤ 5.

16k = 2|W | =

3k
∑

i=1

|V (Hi ∪ Hi+1 − {yi+1}) ∩ W | ≤

5 × 3k = 15k, a contradiction.
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Thank You!
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