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Part 1

PRELIMINARIES



1. Notation

All graphs in this theslis are finite and undirected
with no loops or multiple edsges. Let V(G) denote the set of
vertices of G. The edzes of G are 2-element subsets of
V(G), and the éet of all edges of G is E(G). Two
vertices u,v are adjacent if fu,v}€E(G).

For any set X, we let |X| denote the cardinality
of X. Throughout this thesis, [V(G)] will be denoted
by p, and we shall assume that p>1l.

The number of edges incident with a vertex v e V(G)
is called the degree of v in G, and is denoted degG(v).

We define

A(G) = max degG(v)
vev(G)
and
6(G) = min degG(v).

veV(G)
The comvlement of G, denoted Gc, is the graph on the
same vertex set V(G&, in which §{u,v} ¢ 8(G%) if and only
if fu,v} € E(G), where u,ve€v(G). Clearly, for any
graph G,

A(G%) +8(G) +1 = p.



For two gravhs G and H with [V(H)l < [v(G)| , an

embedding of H into G 1is an injection
m: V(H) —V(G)

that maps edges of H into edges of G. If such an
embedding exists, we say that H is a subgraph of G.
Note that when IV(H)l = |V(G)l, H is a subgraph of G
if and only if GS is a subgraph of HC.

Brackets will be used with two meanings, depending
upon their context. For‘any rational number r, [r]
denotes the greatest integer less than or equal to r.
For a subset X € V(G), we denote by G[X] the subgraph
of G induced by X: thus, V(G[X]) = X and if u,veéX,
then ju,vi€ E;‘(G[X_]) if and only if iu,vi€ Z(G). We
denote by G - X the graph G[V(G) - X].

A complete graph on n vertices is a graphAon n

vertices in which any pair of distinct vertices are

ad jacent. Such a graph will be denoted by Kn. A

complete bipartite sravh on disjoint sets of n and m

vertices is the graph on these vertices in which each
vertex in the n-set is adjacent to every vertex 1in the
m-set. Such a graph is denoted Kn,m'
A maximal complete subgraph induced by some ver-

tices of a graph is called a clique. A maximal com-

vlete bipartite induced subgraph is called a bicligue.



A set X of vertices is stable if G[X] is edgeless.
The maximum cardinality of all stable sets X & V(G) 1is

denoted B(G), and is called the stability number of G.

The maximum number of vertices in a clique of G, denoted

0(G), is called the clique number of G. Clearly,

0(G) = p(G°); 6(G°) = B(G).
A coloring of G is a partition of V(G) into
stable subsets, where the partition is unordered and

admits null sets. A set X € V(G) is monochromatic in

a coloring of G if all vertices of X have the same
color: 1i.e., they lie in the same set in the coloring

partition. The chromatic number X(G) of G is the

fewest possible number of sets in a coloring of G.

A path in G is a sequence of vertices Vy,Vy,ee.,Vy
in V(G) for n>1 such that

(1.1) vy =V implies either i=j or fi,Jj3 = 10,ni;

(1.2) for 1=1,2,...,n, v, 1is ad jacent in G to v, 5.
The vertices A and v, are said to be joined by the path.

If v we say that the path is closed; otherwise,

0= "'n’
the path is open. A graph is connected 1if any two ver-
tices are joined by a path. A component of G is a maxi-
mal connected subgraph of G. A vertex of a connected
grapn is a cutvertex if its removal disconnects the graph.

A polygon is a subgraph determined by a set of vertices

and edzes joining consecutive vertices 1in a closed path.



The girth is the number of edges of the polygon. A

polygon with odd girth is an odd polygon. An arc is a
subgraph determined by the set of vertices and edges
joining consecutive vertices in an open path. An odd arc
is an arc with an odd number of edges.

A tree is a connected graph having no polysaons.

A e-graohlis a graph consisting of three distinct
arcs, joining the same two vertices and having no other
common vertices.

To simplify notation, we shall denote the single-
ton set 3x§ by x.

Given a set X and a subset ?xl....,xn}, let
(xl Xp oo xn) denote the cyclic permutation that sends
to x

X 1<i<n, that sends X, to Xq and that fixes

i 141’
all other elements of X. Given a permutation a: X—>X
and a function m: Y —»X, for sets X and Y, we denote
by am the composition of a andmwhich maps y€Y to
a(n(y)) € X.

Given a set X and a finite seguence xl’XZ""'xn of
members of X, such that xi=:xj. i<j imply xi=:x1+1=
cor=Xg, let (xl Xo e xnr denote the cyclic permuta-

tion obtained by deleting from Xl'XZ”"lxn the terms

which have previously appeared in the sequence.



2. Introduction

Two problems are considered in this dissertation.
They concern somewhat separate topics, but both depend
upon degree constraints, and there are several points
of overlap. First, we consider the problem of estimating
the chromatic number X(G), knowing A(G) and 6(G).
Then, we consider the problem of giving sufficient
conditions, in terms of A(H) and A(G®), for a graph
H on p vertices to be a subgraph éf a graph G, also on
p vertices.

The basic result in the literature on the coloring
problem is Brooks' Theorem [5]:

Theorem 2.1 Let G be a graph with maximum degree

N(G). We have

(2.1) X(G) < A(G) +1.
If A(G) =2, then equality holds in (2.1) if and only if
G contains an odd polygon. If A(G) # 2, then equality

holds if and only if G contains a clique KQ(G)+1'

Note that if A(G) =2, an odd polygon of G is
necessarily a connected comvonent of G. Also, a clique
KA(G)+1 1s necessarily a component of G, Such components,

wnich- force equality in (2.1), are called BA(G)—components.

6



Since each component of a graph can be colored
independently, we can assume without loss of generality,
that G is connected.

We give a proof of Brooks' Theorem by induction
on A(G), and in so doing, we obtain new infofmation.

For instance, we show that if G is not a qﬂ(G)—component,
then there 1s a.coloring of G in A(G) colors in which
some monochromatic set contains B(G) vertices. Also,

we characterize those connected graphs G for which there
is a coloring of G in A(G) colors such that some mono-
chromatic set consists solely of vertices of degree A(G).

In section 4 we consider the problem of partitioning
the vertices of a graph into sets Xl’XZ""’Xn such that
the numbers ZB(G[Xi]). {-1,2,...,n satisfy various
constraints. One result will be used for a problem on
subgraphs. Another result is a new proof of a partition
theorem of Lovasz [11].

We combine, in section 5, this partition theorem
of Lovasz with Brooks' Theorem to give an estimate of
X(G) in terms of A(G) and (G). The result improves
(2.1) when 6(G) < 3 A(G).

In section 6 we consider further the interrelation-
ship between %(G), A(G) and 6(G).

In [6], we considered the problem of giving a

sufficient condition, based upon A(H) and A(G®), for



H to be a subgraph of G. We continue here to obtain
sharper resulté.

Oour first result, which has recently been indepen-
dently obtained by Sauer and Spencer [14], is that if
G and H are graphs on p vertices satisfying

2A(G%)A(H) < p-1,
then H is a subgraph of G. This is best possible only
when A(G®) =1 or A(H)=1. We continue, in section 7,
by discussing a conjectuéed improvement of this result
that would be best possible if true, and we consider
various special cases treated in the literature.

In section 8, we give a slightly sharper result
when A(H) = 2 whose proof 1s not long.

In section 10, we show that if A(H) =2 and if

AG®%) < ’]3"P - max( 9, %PI/B)-
then H is a subgraph of G. The coefficlent % is best
possible. However, the proof is quite long. In the
speclal case where ﬁvmry component of H is either K3,
KZ’ or Kl, we obtain an even sharper result in section
9. We show that if A(G®) < }’—5—1- and if such a graph H
is not a subgraph of G, then G lies in one of two classes

which do not have H as a subgraph. We characterize

these classes.
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3. Brooks' graph-coloring theorem and

the stability number

In this section, we shall consider a connected
graph H, with at least one edge. To simplify nota-
tion, we denote A(H) by h.

A maximum stable su?set of the set of vertices

of degree h will be called a superstable set,

A Bh-component of H was defined in section 2.
The equivalence of (3.4) and (3.6) of Theorem 3.2
below is Brooks' Theorem (Theorem 2.1).

Albertson, Bollobas, and Tucker [1] showed first
that with two exceptions Hl and HZ’ defined below,
every graph H with A(H) = h and with no subgréph
Kh has stability number

g(H) > IV(H)] /h,
and they conjectured that such graphs H have an
h-coloring in which some monochromatic set has nmore
than JV(H)]/h vertices. Second, they proved this
conjecture for graphs that are not regular of degree
h. Theorem 3.2, combined with the first result of
Al bertson, Bollobés, and Tucker shows that this con-

jecture is true, even for regular graphs.

10
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The two exceptional graphs, H1 and HZ’ may be
defined as follows: 1let V(Hl) be the integers modulo
8, and let {v.wieE(Hl) if and only if

v-w=1,2,6, or7 (mod 8).
Let V(HZ) be the integers modulo 10, and let
v,w} € E(HZ) if and only if
v-ws=1,4,5,6,0r9 (mod 10).

A Brooks tree is any graph H with A(H) =h that

arises from a tree T satisfying A(T) <h by the replace-
ment of each vertex of T with

(a) an odd polygon if h = 3;

(b) a clique K 1f h £ 3,
such that if x and y are adjacent vertices of T, then
the polygons or cliques substituted for x and y are
joined by an edge whose removal disconnects H. Thus,

K. is the only Brooks tree with h=1; odd arcs with

2
at least 3 edges are the only Brooks trees with h=2;
and if h2;3; then a Brooks tree is not a tree in the

usual sense of the word.

Theorem 3.1 Let H be a connected graph with

A(H) = h > 1. The following are equivalent:
(3.1) H is a Bh-component, or a Brooks tree;

(3.2) There is no superstable set S such that
H-S can be colored in h -1 colors;
(3.3) There is no stable set S of vertices of de-

ree h su h that H« 58 can be colored in h - 1 colors,
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We also have

Theorem 3.2 Let H be a connected graph with

A(H) = h > 1. The following are equivalent:

(3.4) H is a B _-component;

h
(3.5) There is no maximum stable set S, sucnh
that H- S can be colored in h-1 colors;
(3.6) There is no h-coloring of H.

Proof of Theorem 3.2 from Theorem 3.1: For

N(H) <2, the theorem 1s .easily verified. Assume
therefore, that A(H) 2> 3.

We show that if (3.1), (3.2), and (3.3) are equi-
valent for A(H) =h, then (3.4), (3.5), and (3.6) are
also equivalent for A(H)=h. Since (3.4) implies (3.6) and
(3.6) implies (3.5), it suffices to prove that (3.5)
implies (3.4) if (3.1), (3.2), and (3.3) are eduivalent.

Adjoin to H a set V of Z (h- degH(v)) vertices
disjoint from V(H), where the sum runs over all v € V(H).
We join each vertex v of H to exactly h-—degH(v) ver-
tices of V, such that no vertex of V is joined to more
than one vertex of H. Denote the resulting graph H'.

Then,
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(3.7) H'[V(H)] = H;

(3.8) Any v &€V(H) has degree h in H';

(3.9) Any veV has degree 1 in H'.

By (3.7) and (3.8), a superstable set S in H' is
a maximum stable set in H. Hence, (3.5) for H implies
(3.2) for H', whence by (3.1); either H' is a B -com-
ponent, or it is a Brooks tree. Since Brooks trees
have vertices of degree h-1, conditions (3.8), (3.9),
and h>3 imply that H' is not a Brooks tree. Thus,
H' is a Bh—component, and therefore, has no vertices
of degree 1, whence H=H'. This proves (3.4), and thus
the equivalence of (3.4), (3.5), and (3.6). Hence,
Theorem 3.2 follows from Theorem 3.1l.

Proof of Theorem 3.1l: Again, we may suppose that

h>3. Since (3.1) implies (3.3) and (3.3) implies (3.2),
it suffices to show that (3.2) implies (3.1).

Suppose inductively that the theorem is true for
all graphs G with A(G) <h. Then Theoren 3.2 is true
for such graphs G. Let H be a graph with A(H) =h
such that H does not satisfy (3.1), and such that for
any superstable set S, H-S has no (h-1)-coloring.

For a given superstable set S, Theoren 3.2 and

A(H-S) <h-1
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imply that either H- S can be colored in h -1 colors,

or H-S has a B -component. We have already preclu-

h-1 .
ded the first possibility. Hence, H-S has a Bh_l—com-
ponent. Without loss of generallity, we shall choose

S to be a superstable set that minimizes the number of
Bh_l-components in H-S.

Suppose that a vertex s €V(H) is in no By _j-com-
ponent in H- S, regardless of the choice of a super-
stable set S that minimizes the number of Bh_l-compo-
nents in H-S. Since H is connected, such a vertex s
exists that is adjacent to a vertex v lying in a
Bh_l-component C of H- S, for some such 3. Since the
only vertex not in C that is adjacent to v lies in S,
we must have s€S., Then S4+v-s 1s a superstable set,
and either H- (S+ v - s) has one fewer Bh_l-component
than H - S, contrary to the choice of 3, or s lies in a
Bh_l-component of H- (S4+v-s), contrary to the choilce

of s. Hence, by contradiction, all vertices of H lie

in B -components 6f H- S, for suitable S.

h-1
Let P be a polygon in H with the property that
there 1s no superstable set S such that a Bh_l-com—

ponent of H-S contains P. If h=3, any polygon of
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aven pirth will do; ntherwise, any polyzon not contained
in a clique suffices. We will show that 1if H is not a

Bh—component or a Brooks tree, then such a P must exist.

If P does not exist, then
(3.10) If P' is a polygon in H and if h=3, then
P' haz odd girth
and
(3.11) If P' is a polygon in H and h> 4, then
P'.is Pﬁﬂﬁ&éﬂed in a clique.
Suppose, by way of contradiction, that there are dis-
tinct overlapping subgraphs C1 and C2 of H, where Ci

is a B -component of H"Si’ for some superstable

h-1

set Si' If h>4, then Cl and C2 are cliques on h ver-

tices each. Since Cl and C, overlap, &(H) =h forces
IV(Cl)~»V(CZ)| < h4 1.

Since C, and C., are distinct, we have equality, and

1 2
hence H[V(Cl)\JV(CZ)] is either isomorphic to Kh+l or

to K minus an edge. In the first case, H is a

h41

Bh—component. In the second case, let P' be a polygon

on 4 vertices in H[V(Cl)~JV(CZ)] containing the 2 non-
ad jacent vertices. This violates (3.11). If h=3, then

C, and C

1 , are overlapping odd polygons, and h<.4
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forces them to overlap in an edge. Then Clv C2 contains
a 6-graph, and hence an even polygon.  Thus, (3.10) is
violated. Hence, if P does not exist, then, since
each vertex of H lies in a Bh_l-component of H-S for
a suitable superstable set S, V(H) can be partitioned
into sets Vl'VZ”"’Vn' such that H[Vi] is a Bh_l-com—
ponent of H-S, for suitable superstable S. All poly-
gons of G are contained in these H[Vi]. Moreover, H
is connected, and so 1tiis easily seen in thls case
that if (3.10) and (3.11) hold, then H must be a Brooks
tree or a Bh—component. This is contrary to assumption,
and we may therefore conclude that P does exist.
To prove the theorem, we will derive a contradiction
from the existence of P.

Let C, be a B

0 h-1

CO intersects P, and such that So is superstable and

chosen to minimize the number of Bh_l—components in

-component of H- S, such that

H-SO. Since the d?gree of any vertex of C0 in H--S0
is h-1, and since, A(H) =h, an edge of P lies in
E(CO). Since P is not contaired in Cg, which is an
induced subgravh of H, an edge of P lies outside E(CO).

Tnerefore, there is a vertex v of V(P)"V(CO) having

one incident edge in E(Co) and the other incident edge
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{v,s% outside E(CO). Since CO is a component of H-SO,
we have s €S5;. '
f verti
Define a sequence Vl'sl’VZ'SZ""’vm'Sm of vertices

along P as follows: Let

Vl = V3 Sl = S;

For each 1=1,2,...,m-1, there is a superstable set

S, = S

i 1-1+ 74~ 53

ant a (unigue) B, _j-component C, of H--Si containing

Shldoe

+ -
i° If for some 1, si is not in a Bh-l component of
H"Si’ then H--Si has fewer Bh_l—components than H-SO,
contrary to our choice of SO. The polygon P intersects

s

Ci in a path starting at Sy and ending at a vertex of Si'

which we shall call vi+1. Thus, we have determined a
vertex S3,1¢€ V(P) S, that is ad jacent in P to Vil
and is not in C,. Since v, is adjacent to h-1

i i+l
vertices in C.1 also, degH(vi+l) = h. Thus, since S,
is superstable,

S —Si+v s

141 © i+l T Cisl
is also a superstable set. We terminate the sequence

at the first vertex s (m>1) that is adjacent to a

vertex of the original Bh_l-component Co-of H-So.

To see that sm exists, note that P determines a closed
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path, and the first vertex along that path after v and
s that is adjacent to a vertex of the qriginal Bh-l'
component is necessarily in SO’ and hence in S.1 for
each 1 <m.

Of course, since sme Sm-l is the first vertex in
the sequence to be adjacent to a vertex of V(CO). the
vertices of V(Co-v) have not been moved into the super-

stable set S as 1 runs from 0 to m-1, and no vertices

1
ad jacent to vertices of CO have been moved out of the
superstable set. Thus, in the Bh_l-component of H--Sm
containing Sm and CO-v, any vertices other than Sn
or V(CO-V) would be adjacent to s_ only. But no
vertex of a Bh_l-component is a cutvertex, and so Sy
and V(CO-v) together induce a Bh_l-component of H-Sm.
Therefore, we must have

N(sm)--vm = N(v) - s,
where N(v) denotes the set of vertices of H adjacent

to v.

If Cy is a poly/gon of girth at least 5, then s 1is
ad jacent to two nonadjacent vertices X%, of degree
h=73 that comprise N(v) -s. Since S is the only
vertex in S0 to which xl and x2 are adjacent,

SonJ{xl,x23 ~ Sp is a bigzger superstable set than SO’

contrary to the maximality of SO.



If CO

vertex of Co-vi. If vy and s, are ad jacent, then
m=1, and V(Co)q-sm induces a clique Kh+l in H. Since
H is connected, Kh+l is necessarily all of H, a case
excluded since (3.1) is false. Suppose, therefore,
that Sh and v, are not adjacent. Let x be a member

of the equal sets V(Cm-sm) = V(CO-V). ' Then
H-—(SO4.x-sm) has fewer Bh_l—components than H -5,

and S +X - s, is a superstable set. Since this

0
contradicts the choice of H, P does not exist. But,

as we have seen, this contradicts the assumption that

H is a B, -component or a Brooks tree. This proves the

h

theorem.

19

is a clique Kh’ then Sp is adjacent to every



L, Some partition theorems

We consider the problem of partitioning the vertex
set of a graph so that the subgraphs induced by the
subsets of vertices will satisfy various constraints
on the degree of their vertlces.

Given sets X,Y  V(G), we denote by E(X,Y) the
cet of edges in E(G) with one end in X and the other
end in Y. Let ES(X,Y) denote the set of edges in E(G®)
with one end in X and the other end in Y.

Given a partition XlVX2 of V/(G), we simplify
notation by writing Gi for the subgraph G[Xi] induced
by Xi' where 1=1,2.

Lovéasz [11] proved a variation on the first theorem
below, except that he maximized an expression different
than f,(X,,X,).

Let h, and h

1 2
fl(xl.xz) = IE(Xl,xz)\ + hllxll + hzlle.

be integers, and let

20
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Theorem 4.1 Let G be a graph with maximum degree

A(G) >1, and let h,.h, be nonnegative integers such that
A(G) = hl+h2+1.

If le X2 is a partition of V(G) that maximizes fl’ then

for 1=1,2, X, is nonempty, and

i
A(Gi.) < h,.

Proof: Of X X2, at least one set, say Xl' is

1!
nonempty. Later, we show that X2 is also nonempty,

whence the following argﬁment applies also to Xz. Let
x:eXl. By hypothesis, |

= IE(X,X2)I - 'E(xnxl)l + hl - hzo
We add 2 degg (x) = Z}E(x.xl)\ to each side and get
1
ZdGSGl(X) < 1E(x,X,)1 4 lE(x, X))l & hy - h,

= degG(x) + hy - h,
< (h) + hy + 1) + 0y -hy

Dividing by 2 and observing that the left side is an
integer, we get
degGl(x) < h;.

Since x €X., 1is arbitrary, we have

1
A(Gl) < h < N(G),
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whence, Xl is not V(G). Thus, X, 1s also not empty,

and the theorem follows.

Corollary 4.2 (Lovasz [11]) Let G be a graph with

A(G) = h, and let h.,h

1* 2""’hn be nonnegative integers

satisfying
h = hl+h2+...+hn+n-l.

Then there is a partition V(G) = xlu:x2~'...\an such

that for i1i<n, if Xi is not empty, then

AGLX D < hye
Proof: Let Theorem 4.1, where n=2, be a basis for

induction. Assume inductively that this corollary is

true for n-1, and write

Theorem 4.1 asserts that there is a partition

S 3) -

Xl (V(3) Xl)such that

A(G[xlj) <h

1
A(G-Xl)<h2+ooo+hn+(n-l)-lo

By the induction hypothesis, there is a partition

Xz\/... VXn of V(u)--X1 such that

a(Glx, D < hy,

for 1=-1,2,...,n. This proves the corollary.
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Conjecture: Let G be a graph on p vertices. If

neither G nor Gc i1s edgeless, then there are partitions
Xlux2 and Y1~'Y2 of V(G) such that
AGLX D + AGGLX,T]) + 2(6°[Y, 1) 4 A(G°[Y,]) < p- 3.
If G is regular, then this conjecture follows
easily from Theorem 4.1.
Suppose that the conjecture is true. It is easily
verified that for any grgph G,
X(G) < A(G)+1.
Thus, the 1lnequality of the conjecture implies
X(G[X; 1) + X(6[X, ) + x(G°[¥ D) + X(6°[¥,]) < p+1.
Therefore, for any graph G,
x(G) + x(G%) < pa+1.
Since this inequality 1is the theorem of Nordhaus and

Gaddum [12], the conjecture, if true, would generalize

thelr theoren.

A nontrivial partition xlxzxz of V(G) is a parti-

tion in which both X1 and X2 are nonempty.



For any partition X,v X, of V(G) we write

1 %2
G =G[X1], i-1,2,

and
Py = XY, i=1,2,

i
and define, for ¢ ¢ (0,17,

1cp2 4 2op?
£2(X1:%5) = 1E(X, X0 + 3ep) + $cps.

Theorem 4.3 Let G be a graph with

A(G) = c(p-1)
for ¢ €(0,1] and p>2. For any partition X;vX

such that

(&.1) f, is maximized, and
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of V(G)

(4.2) %_c(pi-;-pg) is minimized, subject to (4.1),

it follows that

(4.3) X, vX, is a nontrivial partition;
and for i=1,2,

(L.4) A(Gy) < el(py -1).

FProof: Define the linear function

(4.5) e(t) = c-t,

where t> 0. Thus,

(L4.6) A(G) = c(p-1) = c(t)(p=-1) + t(p-1).
For any partition lexz of V(G) and any t>0, define

Fo(Xy,X5) = JE(X X010 + %c(t)(pf-rp
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Thus, for Xl and X2 fixed, Ft igs a linear function

of t with F-intercept f2(X1,X2) and with slope
-%(p§4-p§). Moreover, F, is equal to f,.

Therefore, if X, -~ X, satisfies (4.1), then for any

1 2
other partition Ylk’Yz of V(G),

Fo(X]+X5) 2 Fo(yl.xz).

Also, (4.2) assures that if Y,V Y, is another partition
that maximizes fz(xl,xz)i then

i‘t(h:l,"n.c-,. :_' ;C‘:_L‘YZ).

Thus, the only way that we could have
Cif (4.1) and (4.2) hold is if

FO(Xl’XZ) > FO(Yl,YZ)

and if the slope of Ft(xl’XZ) is strictly less than
that of Ft(Yl,Yz), and t is sufficiently large; Thus,
for t>0 sufficiently close to 0, if (4.1) and (4.2)

hold, then X, v X, also maximizes Ft' We shall consider

1 2

t to be small enonugh so that Xl~rX2 also maximizes Ft'

Reversing the indices if necessary, we may suppose

without loss of generality that Xl is nonempty. Let

xexl. We have
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(4.8) 0

IN

Ft(xl'XZ) - Ft(Xl-x,X2+-x)
= IE(X, X1 + 3e(t) (05 +p3)

- |E(X1-X.X2+x)|

- 3e(t)((py - 1?4 (p,+ 1))
= 18(x,X,)1 - {E(x, X))l + c(t)py
- C(t)Pz - C(t)o

We add 2 deg (x) = 2lE(x,X1)l to each side and get
1

2 deg; (x) < deg,(x) + c(t)pl-c(t)pz-C(t)
1l

<(°Uﬂ+t)ﬂd+p2-l)+c(ﬂpl
- c(t)p, - c(t)
= 2e(t)(p; -1) + t(p-1).
We divide by 2 and substitute for c(t) to get
(4.9) deg, (x) £ c(t)(py -1) + 3t(p-1)
1
= c(p; -1) - t(p; -1) + 3t(p-1)
= c(pl-l) + %t(p-—2p14-l).
If Gy =G, then p, = p, whence by (k.9), if x is a vertex

of maximum degree in G, then

deg,(x) = degg, (x)
P 1

< c(p-1) 4 3t(1 - p)

< c(p-1)

= degG(x),
a contradiction. Hence, (4.3) holds, and (4.9) applies
to either set X, or X.. Since (4.9) holds for t=0,

1 2
(4.4) follows.
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Let lex2 be a nontrivial partition that maxi-
mizes fj(Xl,Xz), with j=1 in Theorem 4.1 or with j=2
in Theorem 4.3. If Theorem L.3 applies, assume also
that (4.2) holds. If x; €X; and x,¢€ X, have the
property that

(L"olo) ‘E(lexz)‘ = ‘E(Xl+x2-xl'x2+xl-x2”'
then (qu-xz-xl) V(Xz-yxl-xz) is also a partition
of V(G) such that the above conditions hold. Any pair
X, X, of vertices satisfying condition (4.10) are

called interchangeable. If X, €X, and X, € X, are

interchangeable vertices, then G[Xl4-x2-xl] and
G[X24-x1-x2] satisfy the same conclusions in Theorems
4,1 and 4.3 that apply to G[X,] and G[x,J.

Theorem 4.4 If in Theorem 4.1 or 4.3 Xy €X1 and

X, €X2 are two adjacent vertices such that

(4.11) degGl(xl) + degcz(xz) = AG) -1,
then Xy and X, are interchangeable, and we have

in Theorem L4.1;

hi
deg, (Xi) =
i [c(pi-l)] in Theorem L.3,
and

degG(xi) = A(G).
Ir x3 1s another vertex that is interchangeable with Xq

then x2 and x3 are adjacent in G.
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Proof: Let xlé Xl and x2<§X2 be adjacent vertices

satisfying (4.11), where Xl~'X2 is a partition of V(G)

that maximizes fl(Xl,XZ) in Theorem 4.1 or maximizes

fZ(Xl.Xz) and satisfies (4.2) in Theorem 4.3. We have

(4.12) |E(Xl+x2-x1,X2+xl-x2)l = 1E(xl,x2)(
d (x,) + d (x,)
+ egc;l *17 * 0%8g %2
- 1E(x, X, - x,)] = JE(x,,Xy = %)l
= \E(Xl,Xz)\ + 2degGl(x1) + 2degG2(x2)
- ‘E(xl,V(G) ‘xz)\ - ‘E(xzyv(G) "xl)l
= |E(X1,X2)l + 2(A(G) -1) - (degG(xl) -1)
- (deg,(x,) - 1) (by (4.11)

By the maximality of fj(Xl,Xz) in Theorems 4.1 and 4.3,
\E(xl,xz)\ cannot be less than lb(xl+x2-xl,X2+xl—x2H.
Hence, (4.12) holds with equality. Thus, x; and x, are
interchangeable. Also, since (4.12) holds with equality,

A(G) -1 = degG(Xi) -1 (i=1,2),
whence, ’

deg,(x,) = A(G).

Observe that if (4.11) holds, then deg, (xl) and
1

degG (xz) attain the upper bound specified by Theorem

2
4.1 or 4.3, whichever is applicable. For instance,
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from (4.11) and from (4.4) of Theorem 4.3,

A(G).—l - degGl(xl) + degGZ(.xz)

A(Gl) + AG,)

IA

< c(pl-l) + C(pz-l)

c(p-1) - ¢

I
>
@
i
(¢

< A(G).
Thus, since A(G) is an integer,
for i=1 and 2. In Theorem 4.1, we can more easily
obtain
! —
(4.14) degGi(Xi) = hy (1=1,2).
If, contrary to the conclusion of Theorsm 4.4, X5 is
not adjacent to X3, then in G[XZ*'XI"XBJ’ X, 1s adja-
cent to x; and to h, or [c(pz-l)], respectively, other
vertices in G[X24-x1-x3]. depending upon whether we
consider Theorem 4.1 or Theorem 4.3, respectively,
However, we have

h2 in Theorem 4.1;
A(GLX, + X, - X3]) <

[c(pz—l)] in Theorem 4.3,
since Xy and x2 are interchanseable, and so we have a

contradiction. Thus, x, must be ad jacent to X5
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We shall use the following result in section 9.

Theorem 4.5 Let G be a graph with p>2 and

(4.15) 8(G) = c(p-1)
for some ¢ €[0,1). There is a nontrivial partition

X v 4

(4.16) f.3(xl.x2) =—;;(l—c)(p§+p§) -]E(Gi)‘ - \E(Gg)l

of V(G) which maximizes

and satisfles

(£.17)  8(G,) 2 clp, - 1),
for i=1 and 2. Furthermore, suppose xlé X1 and xze;xz
are adjacent in G% and satisfy

(4.18) deg, (xl) + deng(xz) = 6(G).

1
Then Xy and X, are interchangeable,

(4.19) degG(xl) = degG(xz) = c(p-1),

and the set of vertices in X interchangeable with Xy

3-1
. c
are adjacent in G3-i to x3_i.

c .
satisfies

Proof: By (4.15), G
(4.20)  A(G%) = (L-c)(p-1)
for some ¢ €[0,1). Note that a partition that maximizes
f3(X1.X2) also maximizes
£50X %) + JB(GO)] = [EC(X).%,)) (1 - ) (p} 4 p5)
which is fz(xl,xz) with 1 -c¢c in place of c and E® in
place of E, Hence, by Theor=m 4.3, there is a nontrivial

partition of Xlux2 of V(G) that maximizes f3(Xl,X2)
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such that

(4.21) A(G;’) < (1-0)(p1—l).
by (&4.4), whence (4.17) follows.

Ir xlé X, and X, €X, satisfy (4.18), then -

dech(xl) + dech(xz) = A(GC) _l’
1 2

whence (4.11) of Theorem 4.4 holds for G°. The remain-
ing conclusions of Theorem 4.5 follow directly from

Theorem 4.4 applied to G?.



5. A bound on the chromatic number of a graph.

In this section we combine Theorem 2.1 of Brooks
[5] and Corollary 4.2 of Lovasz [11] to give an upper
bound on the chromatic number of a graph G, in terms
of A(G) and 0(G).

Theorem 5.1 If G is a graph with no complete

subgraphs on r vertices, where r> 4, then
X(G) £ A(G)+1-[(A(G)+1)/r].
Proof: To simplify notation, let
n=[(A(G)+1)/r].
If n=0, then Theorem 5.1 follows. Thus, we can assume
that n> 0,
By Corollary 4.2, there is a partition of V(G) into
n sets xl’XZ"’°'Xn’ such that if X1 is nonempty, then
A(G[Xi]) <r-1 for 1=-1,2,...,n-1,
and such that if Xn is nonempty then
A GLX ]) < A(G) -r(n-1).
Since G contains no complete subgraphs on r vertices,

neither do the subgraphs G[X,], for all i<n. Hence,

by these inequalities and Brooks' Theoremn,

32
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X(G[X,])) < r-1 for 1-1,2,...,n-1,
and
X(G[x, ) < A(G) -r(n-1).
The latter inequality follows because by definition of n,
A(G) -r(n-1) >r-1,
whence Brooks' Theorem may be applied to G[Xn]. Hence,
x(G) < =, x(c[x,])
< (n-1)(r-1) + A(G) - r(n-1)
A(G) + 1 - n,

and the theorem is proved.
We know of no examples with X(G) < A(G) for which

Theorem 5.1 holds with equality.

It has recently come to our attention that 0. V.
Borodin and A. V. Kostochka have independently obtained
Theorem 5.1. Their result appears in a preprint titled

"On an Upper Bound of the Graph's Chromatic Number

Depending on Graph's Degree and Density."



6. The chromatic number, cligue number and

maximum degree of a gravh.

In this section we obtain results concerning the
structure of a graph G having the parameters
A(G) = h, 6(G) = h-r, X(G) = h-ra41,
where h and r are integers. Our main concern is with
h>6 and r=1. The case r—0 is Brooks' Theorem
(Theorem 2.1), when h> 3.

Theorem 6.1 Let r and h be integers, where

0<r<h. Let G be an edge-minimal graph satisfying
(6.1) A(G) < h, o(G) <h-r, X(G)>h-rasl.
For each e € E(G) there is a maximal stable set S, such
that either e lies in all cliques K, . of G-S_, or e
lies in an edge-minimal subgraph H of G - Se satisfying
(6.2) A(H) < h-1, 6(H) <h-r-1, X(H) = h-r.
Proof: Assume G to be an edge-minimal graph with

(6.3) &(G) h.

IN

(6.4) 0(G) < h-r,
The edge-minimality of G implies that for any e ¢ E(G),

(6.6) X(G-e) = h-r~r.

34
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Hence, (6.5) becomes

(6.7) X(G) = h-T41.

By (6.6) and (6.7), for any maximal stable set S < vV(G),

(6.8) X(G-8) = h-r.

By (6.6), for any e € £5(G), there is a maximal
stable set Se such that Se is monochromatic in an
(h-r)-coloring of G-e. Therefore,

(6.9) Xm-e-sd =h-r-1,
and by (6.3) and the maximality of Se»

(6.10) A(G-S_) < h-1,
and by (6.8),

(6.11) x(G-8.) = h-r.

Since (6.11) precludes e(G-Se) > h-r, either

(6.12) 6(G-5.) = h-r,
or

(6.13) e(G-5,) < h-r.

If (6.12) holds, then (6.9) implies that e lies in

all cliques K of G-35,. If (6.13) holds, then by

h-r
(6.10), (6.13), and (6.11), H = G -8, satisfies the
relations (6.2). Also, since the removal of e from
G-Se reduces the chromatic number of G-—Se, by (6.9),
e 1s in an edge-minimal subgraph H of G--'Se that satis-

fies (6.2).
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Lemma 6.2 Suppose that G is a connected graph with
(6.14) A(G) = h, 6(G) = h-r, %{G) = h-r41,

such that every edge lies in a clique Kh If

...r'
(6.15) h > 3r+ 3,

then every two cliques on h-r vertices intersect in

at least h-2r -1 vertices.
Proof: Suppose first that two cliques of G inter-

sect at a vertex v. We claim that these two cliques

must intersect in at least h-2r -1 vertices. Note

that v is adjacent to h-r -1 vertices in each clique.

If these two cliques overlap at v and at most h-2r -3

other vertices, then v is adjacent to at least

2(h-r-1)-(h-2r-3) = hs1

vertices of G, contrary to (6.14). This proves the claim.
Suppose that Cl and CO are cliques on h-i‘ vertices

each, which do not overlap. Since G is connected, there

is a minimum length path vo.vl,...,v in G_, where

n
‘{vo,vl} GE(Cl) and 5'vn-l'vn3€ E(CO). and since C1 and
Co do not overlap, n> 3. We shall find a shorter path
with these properties, contrary to the minimality of n.
For 1-1,2,3, denote by C:l the clique on h-r
vertices containing the edge {vi_l,vi{. By hypothesis,

and since n> 3, such cliques exist. By the claim, C1
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and C, overlap in at least h-2r-1 vertices, as do

2

C3 and C,. Since !V(Cz)l = h-r, the number of vertices

common to Cl' C2’ and C3 is at least

V(G ~ Cl 4 IV(C5n G = IV(C,)!
>2(h-2r-1) - (h-r)
= h-}r-Z
21,

by (6.15). Let v denote a vertex at which C; and C3
overlap. The path vo,v.v3,...,vn violates the mini-
mality of n. This proves the lemma.

We do not assume Brooks' Theorem in the following:

Theorem 6.3 If h> 3, then there is no graph G with

(6.16) A(G) =h, 6(G) =h, %x(G) = h+1,
in which each edge of G lies in a clique Kh'
Proof: Suppose that such a graph exists. Let

C be a clique K By Lemma 6.2, with r=0, each vertex

h'

of G-C lies in a clique K, that intersects C in at

h
least h-1 vertices. Hence, each vertex of G-C 1is
ad jacent to at least h-1 vertices of C. If |V(G-C)| >2,
then there are at least 2(h-1) edges with exactly
one end in C.

However, since each vertex‘of C hasudegree at most

h, and is adjacent to h-1 vertices in C, each vertex

of C is incident with at most one edge having just one
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end in H. Thus, there are at most h edges with just
one end 1n C. This contradiction shows that V(G - C)|
< 1. But since 6(G) = h, this forces %(G) = h, and
hence G does not exist.

Theorem 6.4 If h>6, then there is no graph with

(6.17) A(G) =h, ©(G) =h-1, X(G) =h
in which each edge of G lies in a clique Kh-l’

Proof: Let C be a clique Khrl of G chosen to have
at least as many vertices of degree less than h as any
other clique,

By Lemma 6.2, with r=1, each vertex of G-C lies
in a clique that intersects C in at least h- 3 vertices.
Hence, each vertex of G- C 1s adjacent to at least
h-3 vertices of C. Therefore, there are at least
(h-3)[V(G-C)| edges with exactly one end in C.

Case I: Suppose that each vertex of C has degree
h. By the choice of C, it follows that each vertex of
G has degree h. Hence, each vertex of C is adjacent
to 2 vertices outside of C, and so there are 21V(C)|
= 2(h-~-1) edges with exactly one end in C. Thus,

2(h-1) 2 (h-3){V(G-C)l,

whence,
I(c-c)l < 2B=L 10

h-3=73 "
|

since h>6. If |V(G-C)| = 3, then since each vertex
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of V(G-C) is adjacent to at most two vertices of
V(G -C), each is adjacent to at least h- 2 vertices
of C. This gives at least (h-2)|V(G-C)| edges with
exactly one end in C. Thus,
2(h-1) > (h-2)|V(G-0C)],
whence,
we-c) < 2B=1 <2,

Case II: Suppose that at least two vertices of
C have degree less than h. Hence, the number of edges
with exactly one end in C is at most 2(h-2). Thus,

2(h-2) > (h-3)1V(G-C)i,
whence
V(e-c)l < 2%5%.

Case III: Suppose that exactly one vertex of C
has degree less than h. Hence, the number ofAedges with
exactly one end in C is at most 2(h-1) -1 = 2(h-%).
Thus,

2(h—%) > (h-3)iv(G-C)l,

whence,
v(c-c) < 2B=3 < 3,
g h—3 —_
with equality only if h=6 and each vertex of G-C is
ad jacent to exactly h- 3 = 3 vertices of ' C. 1In this
case, if v1<EV(G-C) is ad jacent to h-3 = 3 vertices

of C, then vy is in the same cliqgue K5 with another
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vertex v, € V(G-C). By the choice of C, one of ViVy
has degree h==6 in G, for otherwise, we would be in
Case II. This vertex is adjacent to at most two other
vertices of V(G -C), and hence to four vertices of C.
But this contradicts the earlier remark that each ver-
tex of G-C 1is adjacent to exactly three vertices in C.

Therefore, in any case,

Iv(G-C)l < 2.

If |V(G-C)] <1, tk;en IV(G)] < h, and so A(G)
< h-1 and 0(G) = h-1 imply %(G) = h-1<h. Thus, we
may assume that |V(G-C)| = 2 and |V(G)] = h+1l. Let
S be a maximum stable set in V(G). If |St > 3, then
X(G) < h. Since 6(G) = h-1, |S] > 2. Suppose,
therefore, that S| = 2. Write S = {sl,szz. If G-8
is not a clique Kh-l' then X(G-S) < h-2, whénce
X(G) < h., On the other hand, suppose that G-3S is a

clique K Since 6(G) = h-1, s, 1s not adjacent

h-1°
to some vertex v, € V(G - S), and S, ls not adjacent to

some point v,e€ V(G- S). Since S is a maximum stable

2
set, v1 # v2. Thus, since

X(G -8 - ivl,vz’s) = W(G-s-ivl.vzg)[ = h-3,
and since isl.vli and isz.vzi are stable sets,
%(G) < h. Therefore, G does not exist, and the proof

of Theorem 6.4 is complete.
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Both Theorem 6.3 and 6.4 are best possible in a
certain sense. | If h=2, then Theorem 6.3 fails for an
odd polygon of at least five vertices. Suppose that
h=5 in Theorem 6.4. We construct a counterexample
G as follows. Let V(G) be a set of bn4 2 vertices,
n>2, and let m map them onto the vertices of a polygon
G' on 2n+ 1 vertices so that exactly two vertices of
V(G) are mapped to each vertex of G'. We define the
edges of G to be the pairs AL such that either

(v -_-n(v2) or n(vl) and n(vz) are adjacent in G',

1)
Theorem 6.5 Let r=0 or 1. If for sone

h > 3r.4+ 3 there is a graph G with

(6.18) A(G) £ h, (G) < h-r, X(G) = h-ra41,
then there is a subgraph H of G, outside 61‘ a maximal
stable set S, which is edge-minimal with respeﬁt to

(6.19) A(H) <h-1, 6(H) £h-r-1, X(H) = h-r,

Proof: Without loss of generality, we may assume
that G 1s edge-minimal with respsct to (6.18). By
Theorem 6.1, with r=0 or 1, each edge e of G either
lies in a clique Kh—r of G - Se’ for some maximal stable
set Se € V(G), or there is a subgraph H of G-Se
satisfying (6.19). By Theorems 6.3 and 6.4, it is

not possible that each edge e €E(G) lies in a clique
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Kh-r' for no suph graph exists. Thus, there is an edge

e contained in a subgraph H of G satisfying (6.19).

Corollary 6.6 1If Brooks' Theorem holds for all

graphs H with A(H) = 3, then Brooks' Theorenm holds
for all graphs.

Proof: Brooks' Theorem (Theorem 2.1) for a(H)
= 3 is a bésis for induction. By Brooks' Theorem for
A(H) = h-1, there is no graph satisfying (6.19).
Thus, by Theorem 6.5 with r =0, there is no graph G
satisfying (6.18), and so Brooks' Theorem holds for
A(G) = h.

Corollary 6.7 If there is an integer n>6 such

that there is no graph H satisfying

(6.20) A(H) =n, 6(H) =n-1, X(H) =n,
then for all h>n, there 1s no graph G satisfying

(6.21) A(G) = h, 6(G) =h-1, X(G) = h.

Proof: We use the nonexistence of a gravh H
satisfying (6.20) as a basis for inductlon. Suppose
there is no graph H satisfying

A(H) = h-1, 8(H) = h-2, ¥(H) = h-1

where h> 7. By Theorem 6.5, with r=1, there 1s no

graph G satisfying (6.21).
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Benedict and Chinn [2] note that for n<?7 there
are graphs H satisfying (6.20). Thus, the induction
suggested by Corollary 6.7 would have to start at
n>8, if at all.

We show that there are infinitely many graphs G
satisfying

(6.22) Ap(G) = 6, 0(G) = 5, X(G) = 6.

We define such graphs reqursively. Let G' be the graph
obtained from K7 by the removal of three edges that
form a triangle in K7. Let Go be either K6 or a graph
that satisfies (6.22). Given Gy let Gi+l be obtained
from G1 and G' by removing from Gi a vertex (but not
its incident edges) and joining these incident edges to
the three vertices of degree four in G' (called vertices
of attachment), so that at most two edges from G, are
assigned to each of the three vertices of degree four
in G'. Suppose, by way of contradiction, that y(Gi+l)
= 5. Since 4 colors are assigned to the 4 vertices of
degree 6 in G', a fifth color must be assigned to each
of the three vertices of attachment of G'. Hence, 1n
a 5-coloring of Gi+l’ the 7 vertices of G' behave like
a single vertex of the fifth color. Therefore,

X(Gi+l) = X(Gi) = 6, a contradiction. Since G,
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satisfies X(Go) = 6, we have ,X(Gi+l) = 6, by induc-
tion. It is clear that the other relations of (6.22)

also’hold for Gi+1'

We give seven nonisomorphic examples of connected
graphs G with

a(G) = 7, 0(G) = 6, Xx(G) = 7.

Define the graph G' to be a clique K8 minus 3 edges
which form a triangle 1n'K8. Thus, G' has 3 vertices
of degree 5 and 5 vertices of degree 7. For any non-
empty subset S of the set of vertices of a clique K7,
construct G by removing each vertex of S (but not the
incident edges) and replacing it with a copy of G'
so that the six edges incident with a removed vertex
are instead made to be incident in pairs with the 3
vertices of degree 5 in the copy of G'. This gives a
graph G having the desired parameters. The number of
vertices of G is thus 7({Si+1l). Benedict and Chinn
obtained the graph with |S] = 1 as an example G having

these parameters, and noted that the method of con-

struction does not generalize to n> 8.



