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Abstract Let G be a 2-edge-connected graph of order n. Suppose that for any bond E C E(G)

with |E| < 3, each component of G — E has order at least ¥. Then either G has a spanning closed

trail or G has five disjoint connected subgraghs, all of order 3, such that when all five of them are

contracted, G is contracted to K32 3. Various prior conditions( due to X. T. Cai, P. A. Catlin, F.
Jaeger, and H. -J. Lai) for a graph to be supereulerian, i.e., to have a spanning closed trail, follow.
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1 Introduction

We use [2] for terminology and notation not defined here and consider only finite, undirected
graphs, and we allow graphs to have multiple edges but no loops.

A bond of G is a minimal edge set whose removal disconnects G. A contraction of a graph
G is any graph obtained from G by contracting a set (possibly empty) of edges and deleting
all resulting loops. For a graph G with a connected subgraph H, the contraction G/H is the
multigraph obtained from G by replacing H by a vertex vy, such that the number of edges in
G/H joining any v € V(G — H) to vy in G/H equals the number of edges joining v in G to
V(H). Note that multiple edges can arise in contractions. A graph is eulerian if it is connected
and every vetex has even degree (In particular, K is eulerian).

A graph is called Supereulerian if it has a spanning closed trail, and K, is regarded as
supereulerian. For any graph H, define

O(H) = { odd-degree vertices of H}.

By Euler’s Theorem, G is supereulerian if and only if G has a connected spanning subgraph
Gy such that O(Gg) = 0. Denote by SL the family of all supereulerian graphs.

In this paper, we give a sufficient condition for a graph G with §(G) > 4 such that d(u) +
d(v) > 2?" — 1 for every edge uv € E(G) to be supereulerian. As corollaries, it gives various
sufficient conditions due to several authors for a graph to be supereulerian.

2 The Reduction Method

A graph G is called collapsible if for every even set X C V(G), there is a spanning connected
subgraph G x of G such that O(Gx) = X.
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since there does not exist some spanning connected subgraph H of K. 2 such that O(H) = @ which
is a even subset of V(K3). Any collapsible graph G is supereulerian since @ is a even subset of
V(G). Denote by CL the family of all collapsible graphs. It was noted in [6] that C3 € CL, and
that if G has two edge-disjoint spanning trees, then G € CL.

The following theorem is a corollary of Theorem 3 of 6].

Theorem 18!  Let H be a subgraph of G. If H € CL then

(a) GeSL = G/H € SC; and

(b) GeCl G/H e CL.

Catlin(7] conjectured that if H & CL then there is a supergraph G of H such that the
equivalence (a) of Theorem 1 fails.

Thecrem 2 ([6, Theorem 4]) Let H, and H; be subgraphs of G. If H,,H, € CL and
V(H1) NV (Hy) # 0, then H,UH; ecL.

We can define a relation on V(G) as follows: for two vertices u,v € V(G), u is related to v
if and only if u,v € V(H) for collapsible subgraph H of G. Using Theorem 2, we can check that
this is an equivalence relation on V(G). The equivalence classes induce the maximal collapsible
subgraphs of G.

Since K; € CC | any graph G has a collection H\,H,,--- H, (say) of maximal collapsible
subgraphs. It follows from Theorem 2 that the H. s are disjoint and uniquely determined. Let
G’ denote the graph of order ¢ obtained from G by contracting each H; to a vertex vi(1<i<e).
We call G’ the reduction of G. Then H; is called the preimage of v;. If H; = K 1, H; is called
the trivial collapsible subgraph. (In [6], G’ was denoted by G1). Repeated applications of (a) of
Theorem 1 give:

Theorem 3 ([6, Theorem 8]) For any graph G,

GeSL <= G eSL.

A graph is called reduced if it is the reduction of some graph.

Theorem 4 ([6, Theorem 5]) A graph is reduced if and only if it has no nontrivial col-
lapsible subgraph.

Theorem 5 ([6, Theorem 8 and Lemma 5]) Let G be a nontrivial graph and let

Va = {v € V{G)ld(v) < 4}. (1)

If G is a reduced graph, then each of these holds:
(a) G is a simple graph;
(b) G has no cycle of length less than 4;
(c) If G is 2-edge-connected then either |V;| = 4 and G is eulerian or |V > 5.

3 The Main Result

Theorem 6 Let G be a 2-edge-connected graph of order n. Suppose, for any bond
E C E(G) with |E| < 3, that each component of G — E has order at least §- Then exactly one
of the following holds:

(1)Gesg; -
(2) G has five disjoint collapsible subgraphs, say H;, H,,---, H,, such that each [V(H;)| = z
whenever 1 < ; < 5; and if each H; is contracted tno a vertex (1 <4 < 5), then ¢ is contracted

to K3 (see Figure 1).

=
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Figure 1

Proof Let H;, Hs, - H. be the maximal collapsible subgraphs of G. As already noted,
Theorem 2 implies that these H;'s are disjoint and uniquely determined. Since K € CL, each
vertex of G is in some H;(1 < i < ¢). Let G' be the reduction of G ( obtained by contracting
every H; to a vertex, say v;, where 1 <i < c).

By Theorem 4, G’ is reduced and since G is 2-edge-connected, either G =Kyor G is
2-edge-connected and nontivial. Since K, €S8L,if G'=K; then G € SL by Theorem 3. Thus,
we suppose that G’ is 2-edge-connected and nontrivial, and we define

Va={ve€ V(Gl)l dG’(u) < 4}.

By (c) of Theorem 5, either V4] = 4 and G' € SC or |V4| > 5. In the former case, G € SL, by
Theorem 3. It remains to suppose

|Val > 5. (2)
We can assume that v;,vs, - -, U5 are vertices of V(G') in V4. Thus, d(v;) < 3 for 1 <i < 5. The
corresponding maximal collapsible subgraphs are Hy, Hs,---, Hs. Each H;(1 < i < 5) is joined
to the rest of G by a bond consisting of the d(v;) < 3 edges that are incident in G’ with v;. By
the hypothesis of Theorem 6,

V(H) 2 3, 3)

and so s
n=VG) > S IVH) 2 n (@)

=1

Equality must hold throughout (4). This forces equality throughout (3), for 1 < i <5, and
[V(G)| =c=5. (5)

To complete the proof, it suffices to show that G’ (the graph arising from G when all H;’s
are contracted) is K3 3. Since G is 2-edge-connected, so is G', and each edge of G’ lies in a cycle.
By (5), G’ has order 5. By Theorem 3 and G ¢ SL, we have G’ ¢ SL, and so G' is not a 5-cycle.
Since G’ is a reduced graph, it is a simple graph and it has no cycle of length less than 4, by (a),
(b) of Theorem 5. Thus, G’ has no odd cycle, and so each edge must lie in a 4-cycle. Therefore,

G’ = K2,3.
This proves Theorem 6.

4 Special Cases

Various prior results follow from Theorem 6.
Corollary 6A[12]  Any 4-edge-connected graph is supereulerian.
Prool 1T G 1s 4-edge-connected, shen G satisfies the hypothesis of Theorem 6 and is not

contractible to K3 3.
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Corollay 6B Let G be a 2-edge-connected simple graph of order n. If §(G) > 4 and if

every edge uv € E(G) satisfies
dw) +d0) 2 2 -2, (6)

then G satisfies a conclusion of Theorem 6.

Proof Let G be a 2-edge-connected simple graph of order n with (G) > 4, such that
each edge uv of G satisfies (6). It suffices to show that G satisfies the hypothesis of Theorem 6.

Let E be a bond of G with |E} < 3, and let G; and G, be the two components of G — E,
where |V (G1)| < |V(G2)|. It suffices to show that |[V(G,)| > 2. For any e € E(G), let n. denote
the number of edges of the bond E adjacent in G to e.

By 6(G) > 4, we have |V(G;)| > 1. Hence, the component G, has an edge, say uv. By
5(G) > 4 and since G is simple,

444 < d(w) +d(v) < 2(V(G1)| = 1) + nuy S 2AV(G1)| + 1.

Hence, |V(G,)| > 4 > 3 > |E|, and so G has a vertex w (say) that is not incident with any edge
of E. By d(w) > §(G) > 4 > 3 > |E|, w has a neighbor in Gy, say z, that is also not incident
with any edge of E. By (6), since G is simple, and by n,,. =0,

2?" -2 < d(w) +d(z) < 2(|V(G1)| = 1) + nwe = 2|V(G1)| - 2.

Therefore, 2 < |V(G1)|, and so G satisfies the hypothesis of Theorem 6. Hence, G satisfies a
conclusion of Theorem 6.

For graphs of minimum degree at least 4, Corollary 6B implies prior results of Benhocine,
Clark, Kohler, and Veldman!{!'Theorem4] Bryaldi and Shanny®!, Catlin/®, Clark(1%, and Lailt3:14]
as well as the following result:

Corollary 6C*8]  Let G be a 2-edge-connected simple graph of order n. If

6(0)22—1

and if n > 20 then G satisfies the conclusion of Theorem 6, where each H; is either a complete
graph, or one edge short of being complete.
Proof DBy Corollary 6B.

5 Other Remarks

By remarks of Jaeger(!?, any planar graph G with §(G) > 4 is supereulerian.

The following result has recently been proved, but compared to THeorem 6, its proof is long
and difficult.

Theorem 7 If a 2-edge-connected graph G is at most two edges short of having two
edge-disjoint spanning trees, then either G € SL or G is cotractible to K3, for some odd integer
t> 3.

It can be shown that any graph G satifying the hypothesis of Theorem 6 must satisfy the
hypothesis of Theorem 7. Furthemore, if the graph G satisfies the later conclusion of Theorem
7, then it is easily seen that the hypothesis of Theorem 6 forces t = 3.

A corollary of Theorem 7 is an earlier result of Catlinl®!, that if a graph G is at most one
edge short of having two edge disjoint spanning trees, then either G € CL C S£ or G has a
cut-edge, but not both. An earlier consequence of these results is Jaeger's Theor(‘-m[lzl, that if a
graph G has two edge-disjoint spanning trees, then G € SL. Jaegerll"\] observed that this result
implies Corollary 6A, also due to Jaeger. The hypotheses of both results of Jaeger are related.
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Zhan('® proved that if G is 4-edge-connected, then G — {e, e’} has two edge-disjoint spanning
trees, for any e,e’ € E(QG). Catlin!”) noted that the converse holds, and more generally, that for
- any k € N, a graph G is 2k-edge-connected if and only if G — Ej; has k edge-disjoint spanning
s trees, for any k-element subset Ey; C E(G).
Z. H. Chen® has obtained the analogue of Theorem 6 for 3-edge-connected graphs.

Theorem 8/ Let G be a 3-edge-connected graph of order n. If every bond E C E(G)
with |E| = 3 satisfies the property that each component of G — E has order at least 15+ then
exactly one of the following holds:

(1) G € SC;

(2) G has ten disjoint collapsible subgraphs Hy, H,,- -, Hyo such that |V(H;)| = %(1 <
i < 10); and when every H; is contracted to a vertex, G is contracted to the Petersen graph.

. When proving Theorem 8, Chen!® showed that the only 3-edge-connected simple graph of
L order at most 11 that is not collapsible is the Petersen graph. There is a 3-edge-connected simple
' graph G of order 12 that is not collapsible: it has a triangle H such that G/H is the Petersen
graph.
Benhocine, Clark, Kohler and Veldmanl!l conjectured that if a graph of sufficiently large
order n satisfies the condition that

d(u) + d(v) > g ~2

for every edge uv € E(G), then the line graph of G is hamiltonian. By the characterization
of hamiltonian line graphs due to Harary and Nash-Williams[!!l | if G € SC then G has a
hamiltonian line graph. Therefore Corollary 6B implies the Benhocine-Clark-Kohler-Veldman
conjecture for graphs with minimum degree at least 4, because G is supereulerian in Corollary
6B if (6) is strict.
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