Edge-connectivity and edge-disjoint spanning trees

Paul A. Catlin, Department of Mathematics
Wayne State University, Detroit MI 48202

May 16, 2005

Abstract

We characterize the edge-connectivity of a graph in terms of its spanning trees. One example: for $k \in \mathbf{N}$, the graph G is $2 k$-edgeconnected if and only if $G-E$ has k edge-disjoint spanning trees, for any set E of k edges of G.

We use the notation of Bondy and Murty [1]. A well-known characterization of the edge-connectivity of a graph is a variant of Menger's Theorem (see [1]): a graph G is k edge-connected if and only if for any distinct vertices u and v, there are k edge-disjoint paths in G joining u and v. Mader [6] provided a reduction that preserves edge-connectivity. Here we provide a characterization of edge-connectivity in terms of the spanning trees of the graph.

Denote the edge-toughness of a graph G by

$$
\begin{equation*}
\eta(G)=\min _{E \subset E(G)} \frac{|E|}{\omega(G-E)-1}, \tag{1}
\end{equation*}
$$

where $G \neq K_{1}$ and the minimum in (1) runs over all subsets $E \subset E(G)$ such that $\omega(G-E)$, the number of components of $G-E$, is at least 2 . The case $q=1$ of the following result is a well-known theorem of Tutte [9] and NashWilliams [7] (characterizing the maximum number of edge-disjoint spanning
trees in a given graph as $\lfloor\eta(G)\rfloor)$, and the general case of the following result was obtained by Cunningham [3] and extended to matroids by Catlin, Grossman, Hobbs, and Lai [2]:

Theorem 1 [3, 2] Let G be a nontrivial graph and let $p, q \in \mathbf{N}$. Then $\eta(G) \geq p / q$ if and only if G has p spanning trees (repetitions allowed) such that each edge of G lies in at most q of the p trees.

Thus, in the theorem below, the statement $\eta\left(G-E^{\prime}\right) \geq k$ is equivalent to the assertion that $G-E^{\prime}$ has at least k edge-disjoint spanning trees.

Theorem 2 Let G be a nontrivial graph, let k be an integer at most $|E(G)|$, and let \mathcal{E}_{k} be the collection of all k-element subsets of $E(G)$. Then

$$
\begin{equation*}
\kappa^{\prime}(G) \geq 2 k \Longleftrightarrow \forall E^{\prime} \in \mathcal{E}_{k}, \eta\left(G-E^{\prime}\right) \geq k \tag{2}
\end{equation*}
$$

Proof: (\Longrightarrow). Suppose that $\kappa^{\prime}(G) \geq 2 k$ and suppose $E \subseteq E(G)$ satisfies $\omega(G-E) \geq 2$. Count the number t (say) of incidences of edges of E. Each component of $G-E$ is incident with at least $\kappa^{\prime}(G) \geq 2 k$ edges of E. Since there are $\omega(G-E)$ components and each edge of E is counted twice,

$$
\begin{equation*}
2|E|=t \geq \kappa^{\prime}(G) \omega(G-E) \geq 2 k \omega(G-E) . \tag{3}
\end{equation*}
$$

Since (3) holds for all edge sets of the form $E=E^{\prime} \cup E^{\prime \prime}$, where

$$
E^{\prime} \in \mathcal{E}_{k}, E^{\prime} \cap E^{\prime \prime}=\emptyset, \omega(G-E) \geq 2,
$$

it follows that

$$
\left|E^{\prime \prime}\right|+k=\left|E^{\prime} \cup E^{\prime \prime}\right|=|E| \geq k \omega(G-E)=k \omega\left(\left(G-E^{\prime}\right)-E^{\prime \prime}\right),
$$

and so

$$
\begin{equation*}
\left|E^{\prime \prime}\right| \geq k\left[\omega\left(\left(G-E^{\prime}\right)-E^{\prime \prime}\right)-1\right] . \tag{4}
\end{equation*}
$$

Since $E \subseteq E(G)$ is arbitrary with $E^{\prime} \subseteq E$ and $\omega(G-E) \geq 2, E^{\prime \prime}$ runs over all subsets of $E\left(G-E^{\prime}\right)$ for all $E^{\prime} \in \mathcal{E}_{k}$, where $\omega\left(\left(G-E^{\prime}\right)-E^{\prime \prime}\right) \geq 2$. By (4),

$$
\eta\left(G-E^{\prime}\right)=\min _{E^{\prime \prime} \subseteq E\left(G-E^{\prime}\right)} \frac{\left|E^{\prime \prime}\right|}{\omega\left(\left(G-E^{\prime}\right)-E^{\prime \prime}\right)-1} \geq k
$$

for all $E^{\prime} \in \mathcal{E}_{k}$, and so the right side of (2) holds.
(\Longrightarrow). Suppose that the left side of (2) is false; i.e., that $\kappa^{\prime}(G)<2 k$. By the definition of $\kappa^{\prime}(G)$, there is a set E of fewer than $2 k$ edges of $E(G)$, such that $\omega(G-E) \geq 2$. Since $k \leq|E(G)|$, by hypothesis, $\mathcal{E}_{k} \neq \emptyset$. Let E^{\prime} be an element of E_{k} such that either $E^{\prime} \subseteq E$ (if $|E| \geq k$) or $E \subseteq E^{\prime}$ (if $|E|<k$). If $E^{\prime} \subseteq E$, then

$$
\begin{equation*}
\left|E-E^{\prime}\right|<k \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \leq \omega(G-E)=\omega\left(\left(G-E^{\prime}\right)-\left(E-E^{\prime}\right)\right) \tag{6}
\end{equation*}
$$

Therefore, by the definition of $\eta\left(G-E^{\prime}\right)$ and by (5) and (6),

$$
\eta\left(G-E^{\prime}\right) \leq \frac{\left|E-E^{\prime}\right|}{\omega\left(\left(G-E^{\prime}\right)-\left(E-E^{\prime}\right)\right)}<\left|E-E^{\prime}\right|<k
$$

and so the right side of (40) is false. If $E \subseteq E^{\prime}$ instead, then the right side of (2) fails again, because $\omega(G-E) \geq 2$ and hence $\eta\left(G-E^{\prime}\right)=0$.

Corollary $3[8,5,4]$ If a graph G is $2 k$-edge-connected, for some $k \in \mathbf{N}$, then G has k edge-disjoint spanning trees.

Corollary 4 [10] If G is 4-edge-connected, then for any $e, e^{\prime} \in E(G)$, $G-\left\{e, e^{\prime}\right\}$ has two edge-disjoint spanning trees.

Theorem 2 asserts both Corollary 4 (due to Zhan) and its converse.
For odd values of the edge-connectivity, there is an analogue of Theorem 2 , presented last. Since the proof is analogous, we omit it.

Theorem 5 Let G be a nontrivial graph, let k be an integer at most $|E(G)|$, and let \mathcal{E}_{k} be the collection of k-element subsets of $E(G)$. Then

$$
\begin{equation*}
\kappa^{\prime}(G) \geq 2 k+1 \Longleftrightarrow \forall E^{\prime} \in \mathcal{E}_{k}, \eta\left(G-E^{\prime}\right)>k \tag{7}
\end{equation*}
$$

References

[1] A. J. Bondy and U. S. R. Murty, "Graph Theory with Applications". American Elsevier, New York (1976).
[2] P. A. Catlin, J. W. Grossman, A. M. Hobbs, and H.-J. Lai, Fractional arboricity, strength, and principal partitions in graphs and matroids. Disc. Appl. Math., to appear.
[3] W. H. Cunningham, Optimal attack and reinforcement of a network. J. Assoc. Comp. Mach. 32 (1985) 549-561.
[4] D. Gusfield, Connectivity and edge-disjoint spanning trees. Information Processing Letters 16 (1983) 87-89.
[5] S. Kundu, Bounds on the number of edge-disjoint spanning trees. J. Combinatorial Theory 7 (1974) 199-203.
[6] W. Mader, A reduction method for edge-connectivity in graphs. Ann. Discrete Math. 3 (1978) 145-164.
[7] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36 (1964) 445-450.
[8] V. P. Polesskii, A lower bound for the reliability of information networks. Prob. Inf. Transmission 7 (1961) 165-171.
[9] W. T. Tutte, On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36 (1961) 221-230.
[10] S.-M. Zhan, Hamiltonian connectedness of line graphs. Ars Combinatoria 22 (1986) 89-95.
ee

