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Abstract

We characterize the edge-connectivity of a graph in terms of its
spanning trees. One example: for k ∈ N, the graph G is 2k-edge-
connected if and only if G−E has k edge-disjoint spanning trees, for
any set E of k edges of G.

We use the notation of Bondy and Murty [1]. A well-known characteri-
zation of the edge-connectivity of a graph is a variant of Menger’s Theorem
(see [1]): a graph G is k edge-connected if and only if for any distinct ver-
tices u and v, there are k edge-disjoint paths in G joining u and v. Mader
[6] provided a reduction that preserves edge-connectivity. Here we provide
a characterization of edge-connectivity in terms of the spanning trees of the
graph.

Denote the edge-toughness of a graph G by

η(G) = min
E⊂E(G)

|E|
ω(G− E)− 1

, (1)

where G 6= K1 and the minimum in (1) runs over all subsets E ⊂ E(G) such
that ω(G−E), the number of components of G−E, is at least 2. The case
q = 1 of the following result is a well-known theorem of Tutte [9] and Nash-
Williams [7] (characterizing the maximum number of edge-disjoint spanning
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trees in a given graph as bη(G)c), and the general case of the following re-
sult was obtained by Cunningham [3] and extended to matroids by Catlin,
Grossman, Hobbs, and Lai [2]:

Theorem 1 [3, 2] Let G be a nontrivial graph and let p, q ∈ N. Then
η(G) ≥ p/q if and only if G has p spanning trees (repetitions allowed) such
that each edge of G lies in at most q of the p trees.

Thus, in the theorem below, the statement η(G − E ′) ≥ k is equivalent
to the assertion that G− E ′ has at least k edge-disjoint spanning trees.

Theorem 2 Let G be a nontrivial graph, let k be an integer at most
|E(G)|, and let Ek be the collection of all k-element subsets of E(G). Then

κ′(G) ≥ 2k ⇐⇒ ∀E ′ ∈ Ek, η(G− E ′) ≥ k. (2)

Proof: (=⇒). Suppose that κ′(G) ≥ 2k and suppose E ⊆ E(G) satisfies
ω(G − E) ≥ 2. Count the number t (say) of incidences of edges of E. Each
component of G − E is incident with at least κ′(G) ≥ 2k edges of E. Since
there are ω(G− E) components and each edge of E is counted twice,

2 |E| = t ≥ κ′(G)ω(G− E) ≥ 2kω(G− E). (3)

Since (3) holds for all edge sets of the form E = E ′ ∪ E ′′, where

E ′ ∈ Ek, E ′ ∩ E ′′ = ∅, ω(G− E) ≥ 2,

it follows that

|E ′′|+ k = |E ′ ∪ E ′′| = |E| ≥ kω(G− E) = kω((G− E ′)− E ′′),

and so
|E ′′| ≥ k[ω((G− E ′)− E ′′)− 1]. (4)

Since E ⊆ E(G) is arbitrary with E ′ ⊆ E and ω(G − E) ≥ 2, E ′′ runs over
all subsets of E(G − E ′) for all E ′ ∈ Ek, where ω((G − E ′) − E ′′) ≥ 2. By
(4),

η(G− E ′) = min
E′′⊆E(G−E′)

|E ′′|
ω((G− E ′)− E ′′)− 1

≥ k,
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for all E ′ ∈ Ek, and so the right side of (2) holds.

(=⇒). Suppose that the left side of (2) is false; i.e., that κ′(G) < 2k. By
the definition of κ′(G), there is a set E of fewer than 2k edges of E(G), such
that ω(G− E) ≥ 2. Since k ≤ |E(G)|, by hypothesis, Ek 6= ∅. Let E ′ be an
element of Ek such that either E ′ ⊆ E (if |E| ≥ k) or E ⊆ E ′ (if |E| < k).
If E ′ ⊆ E, then

|E − E ′| < k, (5)

and
2 ≤ ω(G− E) = ω((G− E ′)− (E − E ′)). (6)

Therefore, by the definition of η(G− E ′) and by (5) and (6),

η(G− E ′) ≤ |E − E ′|
ω((G− E ′)− (E − E ′))

< |E − E ′| < k,

and so the right side of (40) is false. If E ⊆ E ′ instead, then the right side
of (2) fails again, because ω(G− E) ≥ 2 and hence η(G− E ′) = 0. 2

Corollary 3 [8, 5, 4] If a graph G is 2k-edge-connected, for some k ∈ N,
then G has k edge-disjoint spanning trees. 2

Corollary 4 [10] If G is 4-edge-connected, then for any e, e′ ∈ E(G),
G− {e, e′} has two edge-disjoint spanning trees. 2

Theorem 2 asserts both Corollary 4 (due to Zhan) and its converse.

For odd values of the edge-connectivity, there is an analogue of Theorem
2, presented last. Since the proof is analogous, we omit it.

Theorem 5 LetG be a nontrivial graph, let k be an integer at most |E(G)|,
and let Ek be the collection of k-element subsets of E(G). Then

κ′(G) ≥ 2k + 1 ⇐⇒ ∀E ′ ∈ Ek, η(G− E ′) > k. (7)
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