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Abstract

Let & be a family of graphs. Suppose there is a nontrivial graph H such that for any
supergraph G of H, G is in % if and only if the contraction G/H is in &. Examples of
such an &: graphs with a spanning closed trail; graphs with at least k& edge-disjoint spanning
trees; and k-edge-connected graphs (k fixed). We give a reduction method using contractions
to find when a given graph is in &% and to study its structure if it is not in %. This reduction
mcthod generalizes known special cases.

Keywords: Contraction; Spanning tree; Edge-arboricity; Edge-connectivity; Eulerian; Super-
eulerian

1. Introduction

We use the notation of Bondy and Murty [1], except that we do not allow graphs
to have loops, we regard K| as k-edge-connected for all £k € N, and we call a graph
trivial if it is edgeless.

Let H (not necessarily connected) be a subgraph of G. The contraction G/H is the
graph obtained from G by contracting all edges in H and by deleting any resulting
loops. If e € E(G), then we denote G/G[e] by Gle.

A collection & of graphs is called a graph family or a family. When G and H are
graphs, if H is a subgraph of G, we denote this by H C G. Call a family & of graphs
closed under contraction if

GeF, ecE(G)=Glec . (D

Call a family € of graphs complete if € satisfies these three axioms:
(Cl) ¥ contains all edgeless graphs;
(C2) ¥ is closed under contraction;
(C3Y HCG, He%, GGHE ¥ = Ge%.

T Sadly, the author passed away on April 20, 1995.
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Call a family # of graphs free if these three axioms hold:
(F1) & contains all edgeless graphs;
(F2) Ge #, HCG = H € #;
(F3) For any induced subgraph H of G,

He# and GHeZ# =G F.
For any family &% of graphs, we define the kernel #© of & to be the family
#° = {H | for every supergraph G of H,G € ¥ < G/H € ¥}. (2)

Obviously, #© contains all edgeless graphs. If #© = {edgeless graphs}, then we call
O trivial.

Let & be a family % with a nontrivial kernel .#© that is closed under contraction.
Is a given graph G (say) in &? Subgraphs of G in the kernel #© can each be
contracted, and this can be repeated, until a ‘reduced’ graph G, (say) is obtained,
having no nontrivial subgraph in &©, where (2) implies

Ge%¥ ifand only if G, € &. (3)

By (3), to know if G € & it suffices merely to know if the ‘reduced’ graph G, is
in %. If %9 is nontrivial, then this can be easier than determining directly whether
G € &. (We shall prove that this ‘reduced graph’ G, is uniquely determined by G and
FO_if #9 is closed under contraction; that the family of all such ‘reduced’ graphs,
corresponding to a given ., is free; that if ¥ or & O is closed under contraction, then
&9 is a complete family; that all complete families arise as kernels; and that all free
families arise as families of ‘reduced graphs’.)
For any family 7 of graphs, define

FR = {G| G has no nontrivial subgraph in 7} (4)
and

7 ¢ = {G| G has no nontrivial contraction in J }.

(This family 7R is a family of ‘reduced’ graphs corresponding to 7, when .7 is a
kernel. The family 7€ is the dual concept.) We shall also show that if ¥ and % are
families of graphs such that ¥R = % and #¢ = ¥, then ¥ is a complete family and
F is a free family. Furthermore, all complete and free families arise this way.

2. Examples: complete families and kernels

Define the family #¥ of supereulerian graphs: G € ¥¥ whenever G has a spanning
closed trail, and K, is regarded as being in £¥. Thus, if G € ¥ then G is the
spanning supergraph of an eulerian graph, and K, is regarded as eulerian. Clearly,
F¥ is closed under contraction. A graph G is called collapsible if for every even
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subset X of V(G), G has a spanning connected subgraph H with X as its set of odd-
degree vertices (see [2,3]). By Theorem 3 of [2] and its corollary, the family €.% of
graphs whose components are collapsible is a complete family, and ¥.¥ C Y& O We
conjecture that .4 = £¥°.

For any natural number %, let €(k) be the family of graphs with the property that for
any 2k vertices sy, t1,52,0,...,5 & € V(G) (not necessarily distinct) there are pairwise
disjoint (s;,¢)-paths P; (1 <i<k). The family (k) is easily shown to be complete,
and its members are called weakly k-linked. Seymour [7] and Thomassen [8] have
characterized 4(2).

Lai [4] (and Theorem 4 of [5]) proved that if & is a complete family and if % is
the family of graphs at most k edges short of being in €, then €9 = &.

3. Complete families and kernels

In the results of this section, 7, & and % will be various graph families, and ¢ will
often be complete. For the special case & = #¥ and ¥ = €%, some results below
were first done in [2]: Theorem 4, Corollary 2 of Theorem 4, and Lemma 4 of [2] are
generalized below to Theorem 3.7, Corollary 3.8, and Lemma 3.9, respectively.
Lemma 3.1. Let T be a graph family. If

T contains all edgeless graphs, (5)

then 7° C 7.

Proof. Let 7 be a family satisfying (5) and suppose G' € 7 °. By (2),
GeTd < G/IGeT (6)
holds for every supergraph G of G’. Set G = G’ in (6) and use (5) to get G' € J.

Hence, 7°C 7. O

Lemma 3.2. If ¥ is a graph family then (¥°)° = ¥9; also, all edgeless graph are
in & if and only if ¥°C ¥.

Proof. Let & be a graph family. Now, all edgeless graphs are in #©, and so ¥° C ¥
implies that & contains all edgeless graphs. Set & = .7 in Lemma 3.1 to get the last
part of Lemma 3.2. Set #° = 7 in Lemma 3.1 to get (¥°)°C 9. It remains
to prove

F0 C (#9)O. (7)

Let H € %9, let G’ be a supergraph of H, and let G be an arbitrary supergraph of
G'. Hence,

G/G" = (G/H)/(GH), (8)
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and since H € ¥°, (2) implies
GHeY < Ge . (9)
If G' € 9, then by (2),
Ge ¥ GG e, (10)
and by (8)-(10),
GIH € & o G/G' € & < (GIH)/(G/H) € . (1)

Since G/H can be any supergraph of G/H, (11) implies G/H € #°.
Conversely, if G'¢ &9, then for some supergraph G of G,

Ge ¥ GG e, (12)
and so by (9), (12), and (8),
G/H € & < (G/H)/(G'/H) € . (13)

Therefore, (2) implies that G/H ¢ #°.
By the last two paragraphs,

G e o GIH e #°,

when G’ is an arbitrary supergraph of H. Hence, H ¢ (#9)°, whence (2)
implies (7). L[J

Theorem 3.3. For any graph family &, if ¥ or ¥° is closed under contraction, then
SO is complete.

Proof. Let & be a graph family.

First we show that @ = #© satisfies (C1) and (C3). By Lemma 3.2, (¥9)° = .
This and Lemma 3.2 imply that .#© satisfies (C1). Also, (#9)° = #© implies that
% = 9 satisfies (C3): for if H € #° and H CG then H € (%0 and so (2) gives
GHe 9% < Ge 99,

By hypothesis, cither & or #© is closed under contraction. In the latter case &©
satisfies (C2), and so &9 is complete.

It only remains to suppose that & is closed under contraction and to prove that g0
is closed under contraction. Let G € .%°. For all supergraphs G’ of G, (2) implies

G'ey=01GeY. (14)
For any edge ¢ € E(G), we have

(G'le)/(Gle) = G'/G. (15)
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To prove that #© is closed under contraction, it suffices to prove G/e € ¥°, i.e., by
(2), that

Gle € & < (G'le)/(Gle) € & (16)

for all supergraphs G'/e of G/e. Let G’ be any supergraph of G.
Suppose that G’ € .#. Since & is closed under contraction,

Gleec & (17)
and

GG e 4. (18)
By (18) and (15),

(G'e)/(Gle) € &. (19)

Suppose that G’ ¢ %. By (14), we have G'/G ¢ ¥, and so by (15),

(Gle)/(Gle) & &. (20)
By (20) and since & is closed under contraction,

Gleg &. (21)

When G’ € ¥, both (17) and (19) hold, but if G'¢.¥, then both (21) and (20) hold.
Therefore, (16) holds, as claimed. [

Theorem 3.4. For any family € of graphs that is closed under contraction, these are
equivalent:

(a) € is the kernel of some graph family closed under contraction;

(b) € is a complete family;

(c) € =%°.

Proof. (a) = (b): By Theorem 3.3.

(b) = (c): By (b), ¥ is a complete family, and so (Cl) and Lemma 3.1 give
%° C%. Now suppose that H € %, and let G satisfy H CG. Since % is complete,
G/H € € & G € ¥, because axiom (C2) implies ‘<=’ and axiom (C3) implies ‘=".
Hence, H € %°, and (c) follows.

(c) = (a): If (c¢) holds, then € is the kernel of itself. [

Hong-Jian Lai (personal communication) has shown that part (a) of Theorem 3.4
can be replaced by ‘@ is the kernel of some graph family that is both closed under
contraction and not complete’.

Let & be the family of all connected graphs of odd order. Then ¥ = ¥©, and
since & is not closed under contraction, neither is .%©. Therefore, the kernel .#© is
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not complete. Hence, in Theorems 3.3 and 3.4, we need the hypothesis of closure under
contraction.

By (a) < (¢) of Theorem 3.4, any kernel % of a graph family closed under contrac-
tion satisfies (C2), and hence contains multigraphs of order 2. For practical purposes,
to test whether a graph family & (closed under contraction) has a nontrivial kernel
%9, simply look for an order 2 multigraph H in #© of (2). This is generally easy to
check.

A family 7 of graphs is called closed under edge-addition if for any graph G and
edge e € E(G), G—e € .9 implies G € 7.

Theorem 3.5. In any complete family, the subfamily of connected graphs is closed
under edge-addition.

Proof. Let % be the subfamily of connected graphs in a complete family, let G be a
graph and let e € E(G). Suppose G — e € 4. By (b)=(c) of Theorem 3.4, G~ ¢ €
%©, and so G € €  G/(G —e) € €. Since G — e is connected and % is complete,
GG —-e)=K €% Hence Ge€¥. L] '

Lemma 3.6. If % is complete and G € €, then GUK, € €.

Proof. Apply (C3) with H C G of (C3) replaced by G C G UK,. Then G/H of (C3)
is an edgeless graph, and by (Cl) itis in 4. L[]

Theorem 3.7. Let € be a complete family of graphs. Let H be a graph containing
subgraphs H, and H,, and satisfying

H UH, = H. (22)
If H, H, € €, then H € €.

Proof. Let H be a graph with subgraphs H, and H, satisfying (22). Suppose that ¢
is a complete graph family, and suppose H,, H, € €.

The graph H/H, can be obtained from H> by a sequence of edge-additions, additions
of isolated vertices, and contractions (contract newly added edges, to identify certain
vertices of H, in H). Since H, € ¥ and since % is complete, H/H, € €, by (C2), by
Theorem 3.5, and by Lemma 3.6.

Since % is complete, (b) = (c) of Theorem 3.4 implies H,€% = ¥°. Hence H € ¥,
because (2) implies

Hec¥ < HH c%. J

Corollary 3.8. Let € be a complete family and let G be a graph. Let E" be a minimal
edge set such that every component of G—E" isin €. Let E' be the edges of G that
lie in no subgraph of G in 6. Then E" = E' and the set of maximal subgraphs of G
in 6 is unique.
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Proof. If e € E(G) — E” then e ¢ E’, and so E' CE". By contradiction, suppose
that there is an edge xy € E” — E’. Let H, and H, denote the components of G — E”
containing x and y, respectively. Thus, H,, H, € ¥. Since xy ¢ E’, xy is in a subgraph
H,, (say) in . By Theorem 3.7, H,UH,, € ¥ and so (H;UH,,)UH, € €. Therefore,
each component of G—(E” —E(H,y,)) is in €, contrary to the minimality of £”. Hence,
E" is uniquely determined. Since the maximal connected subgraphs of G in € are the
components of G — E”, they are uniquely determined, too. [

Lemma 3.9. Let € be a complete family, let G be a graph, and let H be a connected
subgraph of G in €. Let E" be a minimal subset of E(G) such that every component
of G—E" is in €; let E** be a minimal subset of E(G/H) such that every component
of (G/H) — E** is in €, and let

E' = {e € E(G)| e is in no subgraph of G in €}
and

E* = {e ¢ E(G/H)| e is in no subgraph of G/H in €}.
Then

E'=E =E*=E*". (23)

Proof. The first and last equalities of (23) are instances of Corollary 3.8. It remains
to prove E' = E*,

Let H be a connected subgraph of G where H € %, let e € E’, and suppose e & E*,
by way of contradiction. Then e is in a subgraph H” of G/H where H” € %. Denote
by G” the subgraph of G induced by E(H)U E(H"). Thus,

HCG'", He#, G/H=H"c%,
and so by (C3), G” € ¥. But, e € E(H")C E(G"), contrary to e € E’. Therefore,
E'CE*. (24)

Let e € E(G) — E'. Hence by Corollary 3.8, G has a unique maximal subgraph
Hy € % such that e € E(Hp). If H and H, are disjoint, then e € E(Hy), Hy C G/H,
and Hy € ¢ jointly imply

e¢ E*. (25)

Since (25) holds whenever e ¢ E’, (24) implies £/ = E*. [J

Let ¥ = {C3} (not a complete family) and let G be the graph with V(G) =
{a,b,c,d,e} and

E(G) = {ab, bc, cd, de, ea, ac, ce}.

Now consider what happens if subgraphs in & (i.e., 3-cycles) are contracted until none
remain. If H = G[{a,c,e}] is contracted, then G/H has order 3 and no subgraph in
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€. If instead H' = G[{a,b,c}] is contracted, then G/H' has a 3-cycle on {c,d, e},
and when the latter 3-cycle is also contracted, then only one vertex remains (which
obviously has no subgraph in %). This trivial graph is not isomorphic to G/H. We
shall show next that if % is a complete family, then there is a unique graph having
no subgraph in % that is obtained from G by any sequence of contractions of sub-
graphs in .

4. Free families and reduced graphs

Let % be a complete family and let G be a graph. By Corollary 3.8, G has a unique
maximal spanning subgraph

G =G-E'=G-E

(where E” and E' are the sets of Corollary 3.8), with components in %. Denote the
components of G' by {H\,H,,...,H:}. Define the €-reduction of G, called G/, to be
the graph obtained from G by contracting each H, (1 <i<c) to a distinct vertex and
by removing any resulting loops. If G has no nontrivial subgraph in €, then G = G/E,
and we call G #-reduced. For any family ¥, and for any graph G, the &9 -reduction
of G is K, if and only if G is in the kernel ¥ of #.

Theorem 4.1. If € is a complete family and G is a graph, then the 6-reduction of G,
ie. G/%, is the unique €-reduced graph obtained from G by contractions of subgraphs
in €.

Proof. Let ¥ be a complete family, let G be a graph, and let E” and E’ have the
meaning of Lemma 3.9 (and of Corollary 3.8). Let G, be a reduced graph obtained from
G by a sequence of contractions of connected subgraphs of G in €. As G is contracted
to G| by a sequence of contractions of connected subgraphs of G, Lemma 3.9 asserts
that E” and E’ remain constant and equal throughout every step of the sequence. Since
G, is é-reduced, G, has no edge in any subgraph in %, and so E(G;)CE'. As G is
contracted to G, the only edges that are contracted are edges in subgraphs in €, and
so the constancy of E’ implies £/ C E(G)). Hence, E(G,) = E' = E” and by definition,
G; must be G/¢. U

For any complete family %, the family ¥® (defined in (4)) is the family of
%-reduced graphs.

Corollary 4.2. Let €' and " be complete families of graphs. If €' CE" then
(%//)R g((g/)R

Proof. If G € (¢”)R, then G is %”-reduced, and so G = G/¥". By Theorem 4.1,
G/%" has no nontrivial subgraph in 4”. Since ¢’ C %", G/%" thus has no nontrivial
subgraph in %’, and hence by definition, G/%¢" is %’'-reduced. Hence G € ("R, O
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There is a duality between complete families and free families, and between the
operations ¥ — ¥R and F — FC, where € is complete and Z is free. This duality
appears below, and it has been studied further in [5]. For our purposes here, a con-
traction is trivial whenever it is edgeless, and any graph with an edge is a nontrivial
contraction of itself.

Lemma 4.3. For any family €, if H is a subgraph of G and if G € €R, then H € €},

Proof. By the definition of ¥R, since G € ¥}, G is %-reduced. By definition, any
subgraph H of G is %-reduced, and hence H € ¢R. O

Lemma 4.4. For any family €, any graph in € N6R is edgeless.

Proof. If H € 4R, then by definition H has no nontrivial subgraph in 4. [
Lemma 4.5. For any family F, any graph in F N FC is edgeless.

Proof. If G € #C then no nontrivial contraction of G is in #. O

Theorem 4.6. For any family € that is closed under contraction, €® is a free family.

Proof. We show that ¥® satisfies (F1)—(F3). By definition, all edgeless graphs are in
%R, so (F1) holds. By Lemma 4.3, ¥R satisfies (F2).

Suppose by contradiction that (F3) fails for G and some nontrivial induced subgraph
H of G. Thus, H € €%, G/H € €R, but G &€ ¥R, and hence G has a nontrivial subgraph
G'e®.

First, suppose V(G’')C V(H). Since H is an induced subgraph, G'C H. Since
H € %R, Lemma 4.3 implies that G’ € ¥R, too. Thus, G’ € € N ¥R, which is im-
possible by Lemma 4.4,

Therefore, V(G') ¢ V(H), and so G’/(H N G') is nontrivial, where G’/(H N G")
denotes G’ is H N G’ is edgeless. Since € is closed under contraction and G’ € %,
we have G’/(H' N G) € ¥. Thus, G/H has the nontrivial subgraph G’/(H N G’) in %,
contrary to G/H € #R. Hence, (F3) holds for ¥®, and so 4® is free. [J

Closure under contraction is needed in Theorem 4.6. Let % be the family of all graphs
of odd order. Then % is not closed under contraction. Clearly, K, € ¥R. Suppose that
@R is free. Then (F3) and K, € @R imply that ¥R contains trees of all odd orders. So
does %. This violates Lemma 4.4.

Lemma 4.7. Let F be a free family containing Ky as a member. The subfamily of
connected graphs in FC is closed under edge-addition.

Proof. Let % be a free family containing K, as a member, and let G be a nontrivial
graph with a distinguished edge e such that H = G — e is connected. By contradiction,
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suppose that H € #¢ and G ¢ #©. Then G has a nontrivial contraction Gy (say) in
Z, but H has no nontrivial contraction in Z#.

Case 1: Suppose e € E(Gy). Let Go(e) denote the graph to which G is contracted
when the edges of (E(G)—E(Gp))—e are contracted. First suppose that e & E(Go(e)).
Then the contraction (in G) of the edges of (E(G) — E(Gy)) — e identifies the ends
of e, and hence Gy = Gy(e) and this Gy(e) is also a contraction of H = G — e. But
then H has a nontrivial contraction Gy in %, a contradiction. Therefore, e € E(Gy(e)),
and G, is obtained from Gy(e) by contracting e. If Gy(e) has an edge ¢’ parallel to e,
then Gy € .# could be obtained from H by contracting H to Go(e) — e and then by
contracting ¢’, but this would violate the fact that H has no nontrivial contraction in
F . Hence, Gy(e) has no edge ¢ parallel to e, and so Gp(e)[e], a K, is an induced
subgraph of Gy(e).

Since F is a free family, since Go(e)[e] = K; € F, and since Gy(e)/e = Gy € F,
(F3) implies that Gy(e) € F. By (F2), Go(e) — e € F. Since G — e is connected,
so is Go(e) — e, and it is nontrivial. Hence, H = G — e has the nontrivial contraction
Go(e) — e € #, a contradiction precluding Case 1.

Case 2: Suppose e € E(Go). By Gy € # and by (F2), Go—e € #. Since G — ¢ 1s
connected, so is Gy — e, and so Gy — e is a nontrivial contraction of H lying in &,
contrary to H € #¢. O

Lemma 4.8. For any family #, #° is closed under contraction.

Proof. Let # be a family. If all members of #C are edgeless, then the lemma is easy.

Suppose that G € #€ and that G, is a nontrivial contraction of G. By the defi-
nition of #¢, G has no nontrivial contraction in %, and so neither does Gy. Thus,
G()Efc. O

Lemma 4.9. If F is free and G € #, then G UK, € #.

Proof. Apply (F3) with H and G, respectively, of (F3) replaced by G and G U K|,
respectively. Then G/H of (F3) is edgeless, and by (F1) it is in &#. [

Theorem 4.10. Suppose F is a free family. Then the family € = F* is complete.
Also, F =GR = (FHR.

Proof. If no graph in % has an edge, then % is the family of all edgeless graphs,
% = #C is the family of all graphs, which is complete, and ¢® is the family of all
edgeless graphs.

Suppose that # is a free family such that some graph of # has an edge, and let
% = #C. By (F2), K; € #, so Lemma 4.7 applies. We must prove that ¥ satisfies
axioms (C1)—(C3) of the definition of a complete family, and that # = ¥*. By
definition, ¥ satisfies (C1). By Lemma 4.8, (C2) holds.



P.A. Catlin! Discrete Mathematics 160 (1996) 67-80 77

We prove (C3). Let G be a supergraph of a nontrivial graph

Hecé%. (26)
We claim
GHe®=>Gcé¥. 27)

By way of contradiction, suppose (27) is false. Then
G¢% and G/H €. (28)

By the definition of €, G ¢ % of (28) implies that G has a nontrivial contraction G
(say) in #. Let 0: V(G) — V(Gp) denote the surjection induced by this contraction.
We claim first that there is an edge e € E(H) N E(Gp): otherwise, G/H can be
contracted to the nontrivial graph Gy € #, contrary to G/H € € = ZC in (28). Let
H, be the component of H containing e. Denote

E = {xy|there is an i such that x, y € 07 '(v;,) N H,}.

Let J = (H/E)/(H — E(H,)). Note J € #¢. Let Hy be the subgraph of G, containing
the edges of H, N Gy and no isolated vertices. Note that Hy € .#. Add enough isolated
vertices to Hy so that it will equal J. By Lemma 4.9, J € %, contradicting Lemma 4.5.
This contradiction proves (27) and hence that € satisfies (C3).

Now we prove # C%R. Suppose G € #. By contradiction, if G &€ é® then G
has a nontrivial subgraph H € ¥ = #*. By G € & and (F2), H € #, and so by
Lemma 4.5, H is trivial, a contradiction.

To prove $* C.#, we suppose (by contradiction) that G is a minimal member of
¢R — F. Since F contains all edgeless graphs, G is a nontrivial graph in é®. By
Lemma 4.4, G € ¥ = Z©. One of these two cases holds:

Case A: Suppose G is disconnected. Let H be a component of G and let H' = G—H.
By the minimality of G, both H# and H’ are in #. Let G’ denote the graph obtained
by adding an edge e (say) joining some vertex of V(H) and some vertex V(H').
Therefore, G’ has vertex-induced subgraphs G’'[e], H, and H’, all in & since K, € Z.
By two applications of (F3), G'€ #. By (F2), G = G'— e € #, a contradiction.

Case B: Suppose G is connected. Since G ¢ #©, some nontrivial contraction G
(say) of G is in #. Since G € F, G # Gy. Since G is connected and Gy # K|, we
have E(Gy) # 0. Hence, G — E(Gp) has |V(Gy)| = ¢ components, say H,,H,..., H,,
for some ¢>2. Each H; is an induced subgraph of G, and by Lemma 4.3, H; €
%R (1<i<c). Since G was chosen to be a minimal member of ¥® — % and since
c=2, each H; (1<i<c) is in #. But also Gy € %, and so by repeated applications
of axiom (F3), G € #. This contradiction proves ¥ = #, as claimed. O

In Theorem 4.10, % cannot be just any family. Suppose, for example, that .# is
the family of connected graphs of odd order. Thus, .# violates (F2), so .# is not a
free family. It is easily seen that #° is not complete: #© contains K, and hence
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if (C3) held then #€ would contain all trees. But trees of odd order are in #, and

Lemma 4.5 is violated.
Theorem 4.11. If € is a complete family, then (6%)° =%

Proof. Suppose that % is complete and let # = #®. First suppose G € (¥%)°. By
the definition of #C, no nontrivial contraction H of G is in ¢®. But by Theorem 4.1,
the graph G/% is a contraction of G in %®. Hence, G/% must be edgeless, and this
implies that the components of G are in €. Hence by Theorem 3.7, G € %, and so
(%) C¥.

Suppose instead that G € . The complete family % is closed under contraction
and hence all contractions of G are in ¥. Thus, by Lemma 4.4, G has no nontrivial
contraction in %R, and so by the definition of #C, G € (¥})C. Thus, ¥ C(¥*)°. O

Theorem 4.12. Let 4 and F be two graph families. If both ¢ = F€ and F = 6~,
then € is a complete family and F is a free family. For any complete family €
there is a free family F = € such that € = F<. For any free family F there is
a complete family € = FC such that F = €~.

Proof. Let ¥ and % be two graph families, and suppose ¥ = #€ and & = %R. By
Lemma 4.8, ¥ = #° is closed under contraction. Hence, by Theorem 4.6, = ¢r
is a free family, and so by Theorem 4.10, ¥ = #© is a complete family.

For any complete family %, apply Theorems 4.6 and 4.11 to obtain the desired free
family # = %R. For any free family %, apply Theorem 4.10 to obtain the desired
complete family ¥ = #¢. O

For the operations € — % and & — FC, it is natural to ask when families ¥ and
F exist satisfying 4 = # C and & = %R. Thus, Theorem 4.12 motivates the study
of complete families and free families. Our original motivation for considering these
families was the study of the kernel #© and the corresponding reduced graphs, but
Theorem 4.12 is another justification.

Theorem 4.13. Let #, and F, be free families of graphs. Then

F,C.#, ifand only if F5y CF[.

Proof. Let %, and %, be free families. Suppose #, C#, and let G € /C By
definition, no nontrivial contraction of G is in %,. Hence, no nontrivial contraction of
G is in &, and so by definition, G € Z{.

Conversely, suppose #< C #C. By Theorem 4.10, #5 and # are complete

families. By Theorem 4.10 (twice) and Corollary 4.2,

F=(FRCUFHN =7 O
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Corollary 4.14. Let €' and €' be complete families. Then
€ C€" if and only if (¥R (€.

Proof. By Theorem 4.6, #, = (")} and %, = (%)} are free families. This and
Theorem 4.11 imply both #€ = ((¥")*)¢ = ¢” and #5 = ((¥")})° = ¥’. Applying
Theorem 4.13, we get the result. [

5. Examples: free families

The smallest free family % containing a nontrivial graph is the family of all forests.
(By (F2), if a free family .# has any member with an edge, then K, € #. This and
(F1) and (F3) imply that & contains all forests.) The corresponding complete family
FC consists of all graphs with no cut-edges.

Corresponding to edge-connectivity k'(G), define

W(G) = max x'(H).

Let k € N. If € is the complete family of graphs with k-edge-connected components,
then ¥R = {G|x/(G) < k} is the corresponding free family.

For k=2, define #; = {G |G has girth at least k}. Then %, is a free family, %>
is the family of all graphs, and %3 is the family of all simple graphs.

Define, for any nontrivial graph G,

W) — |E(H)|
D=1 van -1

where the maximum runs over all nontrivial subgraphs A of G. Nash-Williams [6]
showed that [y(G)], called the edge-arboricity of G, is the minimum number of forests
whose union contains G. For £ € N, the family of graphs with edge-arboricity at most
k is a free family. If & is the complete family of graphs with £ edge-disjoint spanning
trees, then @R is the family of graphs G with edge-arboricity at most k, but with no
nontrivial subgraph of G having k edge-disjoint spanning trees.

Suppose a free family .%# contains a graph having an n-cycle. By (F2), K»,C, € #.
This and repeated applications of (F3) imply that all cycles of length at least n are in
F . For example, the free families #.¢® and (¥Z°)R contain all cycles of length at
least 4.

The complete family of graphs whose components all have two edge-disjoint span-
ning trees is contained (by Theorem 2 and the corollary of Theorem 3 of [2]) in the
kernel ¥ #°, a complete family, by Theorem 3.3. Hence, by Corollary 4.14, any graph
G in (LZ°)R has edge-arboricity at most 2.
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