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Any 3-edge-connected graph with at most 10 edge cuts of size 3 either has a span-
ning closed trail or it is contractible to the Petersen graph. � 1996 Academic Press, Inc.

Introduction and Notation

We shall follow the notation of Bondy and Murty [1], but with minor
variations. An arc in a graph G is a path in G whose internal vertices have
degree 2 in G. Denote

O(G)=[odd-degree vertices of G].

A graph G is called even if O(G)=<, and G is called eulerian if G is even
and connected. If G has a spanning eulerian subgraph, then G is called
supereulerian, and we write G # SL.

Tutte [19, 20] and Matthews [17] conjectured that if a 2-edge-connected
graph G has no subgraph contractible to the Petersen graph, then G has
a 3-colorable double cycle cover (i.e., a collection of three even subgraphs
such that each edge of G lies in exactly two of them). We showed before
(see [5 or 6]) that any supereulerian graph has a 3-colorable double cycle
cover. In this context, our present result, that any 3-edge-connected graph
with at most 10 edge cuts of size 3 is either supereulerian or is itself contractible
to the Petersen graph, is of interest. Jaeger [12] had previously shown that
any 4-edge-connected graph supereulerian. Catlin [5] recently showed that
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a graph with no cut edge, and with at most 13 edge cuts of size 3, either
has a 3-colorable double cycle cover, or it is contractible to the Petersen
graph.

Kelmans and Lomonosov [15] and Ellingham, Holton, and Little [10]
had proved this analogous result: a 3-connected cubic graph G has a cycle
passing through any 10 given vertices if and only if G is not contractible
to the Petersen graph in a way such that the 10 given vertices each map
to a distinct vertex of the Petersen graph. This result improved a prior version
due to Holton, McKay, Plummer, and Thomassen [11] and to Kelmans
and Lomonosov [14], in which 10 was replaced by 9 and the Petersen
graph exception did not arise (except as an example to show that 9 was
best possible). Lomonosov [16] showed that the number 10 of the former
result can be improved to 11, but Kelmans [13] obtained an infinite class
of graphs to show that 10 could not be improved to 14.

When S is an even subset of V(G), and S-subgraph 1 of G is a subgraph
1 such that both G&E(1 ) is connected and O(1 )=S. We call a graph G
collapsible if for every even subset S, G has an S-subgraph. Denote the
family of collapsible graphs by CL. Of course, K1 # CL�SL.

Let G be a graph, and let X�E(G). Then the contraction G�X is the
graph obtained from G by contracting all edges in X and by deleting any
resulting loops. Contractions can create multiple edges. If H is a subgraph
of G, then G�H denotes G�E(H ); if e # E(G) then G�e denotes G�[e].

Catlin [2] showed that for any graph G, there is a unique collection
H1 , H2 , ..., Hc of maximal collapsible subgraphs of G, and each vertex of G
is in some Hi . The reduction G$ of G is obtained from G by contracting
those H$i s (1�i�c). A graph is reduced if its reduction is itself, and K1 is
the only collapsible reduced graph.

1. Prior Results

The arboricity of G, denoted a(G), is the minimum number of forests
whose union contains G.

Theorem 1.1 (Nash-Williams [18]). For any graph G,

a(G)=maxWE(H )�( |V(H )|&1)X ,

where this maximum is taken over all nontrivial subgraphs of G.

For a graph G, let F(G) denote the minimum number of extra edges that
must be added to G, to obtain a spanning supergraph having two edge-
disjoint spanning trees. If a(G)�2, then

F(G)=2 |V(G)|&2&|E(G)|. (1)

124 CATLIN AND LAI



F
ile

:5
82

B
16

66
03

.B
y:

B
V

.D
at

e:
08

:0
1:

96
.T

im
e:

15
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

23
62

Si
gn

s:
14

93
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Theorem 1.2 [2]. Let G be a graph, and let G$ be the reduction of G.
Then

(a) G # SL � G$ # SL;

(b) G # CL � G$=K1 ;

(c) G is reduced if and only if G has no nontrivial collapsible subgraphs;
(d) If G is reduced, then G has no cycle of length at most 3, a(G)�1,

$(G)�3, and either G # [K1 , K2] or 2 |V(G)|&|E(G)|�4.

Theorem 1.3 [6]. Let G be a graph with F(G)�2. Exactly one of these
holds:

(a) G # CL;

(b) F(G) # [1, 2] and the reduction of G is K2;

(c) F(G)=2 and the reduction of G is either 2K1 or K2, t (t�1).

Theorem 1.4 [2]. Let G be a graph. Then G # SL if and only if G has
a spanning tree T such that each component of G&E(T ) has evenly many
vertices in O(G).

Theorem 1.5 [2]. Let G be a graph with F(G)=1. If no nontrivial sub-
graph H has F(H)=0, then for any u # V(G), G&u has a spanning tree U
such that G&E(U ) is a spanning tree of G.

Theorem 1.6 [4]. Let G be a graph, let wxyzw be a 4-cycle in G, and
define the partition ?=[w, y] _ [x, z]. Define G�? to be the graph obtained
from G&[wx, xy, yz, zw] by identifying w and y to form a single vertex u,
by identifying x and z to form a single vertex v, and by adding the extra edge
uv. Each of the following holds:

(a) G�? # CL O G # CL;

(b) G�? # SL O G # SL;

(c) [6] If G is reduced, then F(G�?)=F(G )&1.

Theorem 1.7 [8]. If a 3-edge-connected graph G has order at most 13,
then either G # SL or the reduction of G is the Petersen graph.

2. Associated Results

Theorem 2.1. Let G be a graph with }$(G)�2, with F(G)=2 and with no
nontrivial 2-edge-connected subgraph H satisfying F(H )�1. Let yw # E(G).

125SUPEREULERIAN GRAPHS
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Then G&[ y, w] has a spanning tree U such that T=G&EU ) is a spanning
tree of G.

Proof. If G�[ yw] has a nontrivial subgraph H$ with F(H$)=0, then by
definition of F, F(G[E(H$ _ [ yw]])=1, contrary to the assumption that no
such subgraph exist. Therefore, a(G�[ yw])�2, and so by (1), F(G�[ yw])=1.
Let u denote the vertex of G�[ yw] corresponding to yw # E(G). By
Theorem 1.5, G�[ yw]&u has a spanning tree U such that G�[ yw]&E(U )
is a spanning tree of G�[ yw]. Thus U is a spanning tree of G&[ y, w] and
T=G&E(U ) is a spanning tree of G. K

Given a graph G and an edge yw # E(G) such that Theorem 2.1 is
satisfied by trees T and U, call that ordered pair (T, U ) of trees a tree
decomposition of G with respect to yw. A tree decomposition with respect to
yw is called Type 1 if d( y) is odd and d(w) is even. Because of asymmetries
arising later, a tree decomposition with respect to yw is not regarded the
same as a tree decomposition with respect to wy.

Let (T, U ) be a tree decomposition of G with respect to yw. Denote

N( y)=[w, y1 , y2 , ..., yr], (2)

and let Yi denote the component of T&[ y, w] containing yi (1�i�r).

Definition 2.2. Let Fw denote the family of graphs G with a distin-
guished vertex w, such that these properties hold:

(i) }$(G)�3;

(ii) F(G)=2;

(iii) No nontrivial 2-edge-connected subgraph H of G has F(H )�1;

(iv) G&w is reduced and contains no 4-cycle.

Theorem 2.3. Let G be a graph and let w # V(G). Suppose G # Fw , and
let y # N(w). There is a tree decomposition of G with respect to yw, such that
Y1=[ y1] and Y2=[ y2], where y1 and y2 are defined in (2).

Proof. By Theorem 2.1, G has a tree decomposition (T, U ) with respect
to yw. In the rest of the proof, we shall omit the phrase ``with respect to yw''
since yw is understood. It suffices to show that both Y1$K1 and Y2$K1 .
Begin with a tree decomposition (T, U ) with

|V(Y1)| minimized. (3)

Claim 1. Y1$K1 . If U[V(Y1)] is connected, then U[V(Y1)] has two
edge-disjoint spanning trees, and so by Definition 2.2(iii), Y1=K1 . Hence
we assume that U[V(Y1)] has components U0 , U1 , ..., with y1 # V(U0).

126 CATLIN AND LAI
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Choose a tree decomposition such that, subject to (3),

|V(U0)| is maximized. (4)

Choose e1=u0u1 # E(Y1) nearest to y1 in Y1 with u0 # V(U0) and u1 #
V(U1) (say). Then Y1&e1 has two components Y $1 and Y"1 , where y1 , u0 #
V(Y $1) and u1 # V(Y"1). Note that U has a unique path (v0 , vk)-path P1=
v0v1 } } } vk such that v0 # V(U0) and vk # V(U1) with (V(P1)&[v0 , vk]) &

V(U0 _ U1)=<. Note that vk&1 � V(Y1).
If vk # V(Y 1"), then let

U$=U&vk&1vk+u0u1 , T $=T&u0u1+vk&1 vk .

Since vk&1vk is in the unique cycle of U+u0u1 , U$ is a tree with V(U$)=
V(U ). Since vk&1vk connects Y 1" to T&V(Y1), T $ is a tree with V(T $)=
V(T ). Thus (T $, U$) is a tree decomposition violating (3).

Hence we must have vk # V(Y $1). Let P2 be the unique (u1 , vk)-path in
U1 . Let e2=u1"u$1 # E(P2) be such that u$1 # V(Y $1) and u1" # V(Y 1"), and
such that u1" is nearest to u1 in U1 . Let

U"=U&u$1 u1"+u0 u1 , T"=T&u0 u1+u$1u1" .

Since u0 u1 connects U0 and the component of U1&u$1 u1" that does not con-
tain vk , U" is a tree with V(U")=V(U ). Since u$1u1" connects Y $1 and Y 1" ,
T" is a tree with V(T")=V(T ). Thus (T", U") is a tree decomposition
satisfying (3) but violating (4). This proves Claim 1.

Now choose a tree decomposition (T, U ) such that, subject to Y1$K1 ,

|V(Y2)| is minimized. (5)

Claim 2. Y2$K1 . As in Claim 1, we may assume that U[V(Y2)] has
components H0 , H1 , ..., Hc with y2 # V(H0) for some c>0. In Y2 , there is
an edge ei (say) nearest to y2 such that exactly one end of ei is in V(Hi).
Denote by Y $2 and Y 2" the two components of Y2&ei , where y2 # V(Y $2).
Then V(Hi)�V(Y 2"), by the choice of ei . Also by the choice of ei , the
unique cycle C of U+ei has an edge ei" with exactly one end in V(Hi). If
the other end of ei" is not y1 , then one can imitate the argument in Claim 1
to obtain a contradiction. Hence that other end of ei" is y1 .

Let H=G[V(Y2) _ [ y1]]. By Definition 2.2(iv), H is reduced. Since
E(H ) is the disjoint union of E(Y2) _ E(U[V(Y2)]) _ [e1", ..., ec"] and since
U[V(Y2)] has c components, we have by (1) that F(H)=2. By Theorem 1.3
and by y1 , y2 # V(H ), either H$K2, t for some t, or H # [K2 , 2K1]. If
H # [K2 , K2, t], then G[V(H ) _ [ y]] must have a 3-cycle or a 4-cycle
contrary to Definition 2.2(iv). Hence H=2K1 and so Y2$K1 . K

127SUPEREULERIAN GRAPHS



F
ile

:5
82

B
16

66
06

.B
y:

B
V

.D
at

e:
08

:0
1:

96
.T

im
e:

15
:1

9
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

25
01

Si
gn

s:
15

85
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

3. The Main Results

When F(G)�2, the reduction of G is characterized by Theorem 1.3.
Here is a useful partial result for 3-edge-connected graphs with F(G)=3.

Theorem 3.1. Let G be a 3-edge-connected graph with F(G)=3. If G is
reduced, then either G # SL or each of the following holds:

(a) G has no edge joining two vertices of even degree;

(b) G has girth at least 5;

(c) G has no 2-edge-connected subgraph H with F(H )=2.

Proof. Suppose that

G is a counterexample. (6)

Thus, G is 3-edge-connected,

F(G)=3, (7)

G is reduced, (8)

G � SL, (9)

and at least one of [(a), (b), (c)] fails.

Lemma 3.2. G has girth at least 5.

Proof. By (8), G is reduced, and so by Theorem 1.2(d), G has girth at
least 4. By way of contradiction, suppose that wxyzw is a 4-cycle in G.
Define the partition ? of [w, x, y, z] to be [w, y] _ [x, z], and define u
and v and G�? as in Theorem 1.6. Since }$(G)�3, either G�? is 2-edge-
connected, or uv is a cut edge of G�?.

Case 1. Suppose that G�? is 2-edge-connected. By Theorem 1.6(c)
and by (7), F(G�?)=2. By Theorem 1.3, this implies that either G�? # SL
or G�? is contractible to K2, t for some odd t�3 (since }$(G�?)�2, since
CL�SL, and by Theorem 1.2(a)). If G�? # SL, then Theorem 1.6(b)
gives G # SL, contrary to (9). If G�? is contractible to K2, t (t�3), then G
cannot be 3-edge-connected, a contradiction. This precludes Case 1.

Case 2. Suppose that uv is a cut edge of G�?. Denote by Gw and Gx

the two components of G&[wx, xy, yz, zw], where [w, y] is the set of
vertices of attachment in Gw and where [x, z] is the set of vertices of
attachment in Gx . We lose no generality assuming

F(Gw)�F(Gx). (10)

128 CATLIN AND LAI
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Applying (1) to Gw , Gx and G and using (7), we get

F(Gw)+F(Gx)=2 |V(Gw)|&|E(Gw)|+2 |V(Gx)|&|E(Gx)|&4

=2 |V(G)|&|E(G)&[wx, xy, yz, zw]|&4

=F(G)+2=5. (11)

By (10) and (11), F(Gw)�2. By (8) and by Theorem 1.2(c), Gw is reduced.
Therefore if F(Gw)�1 then Gw # [K1 , K2], by Theorem 1.3. But w, y #
V(Gw), and so F(Gw)�1 would force wy # E(Gw). This would imply that
the reduced graph G contains the triangle wxyw, contrary to Theorem 1.2(d).
Hence, F(Gw)=2. By Theorem 1.3(c), Gw$K2, t for some t�1. However,
Gw has only two vertices of attachment (w and y), whereas Gw has at least
three vertices of degree less than 3 in Gw . Hence, some vertex of Gw has
degree less than 3 in G, contrary to }$(G)�3. Thus, Case 2 is also
impossible, and so G has no 4-cycle. This proves Lemma 3.2. K

Lemma 3.3. G has no 2-edge-connected subgraph H with F(H )=2.

Proof. By way of contradiction, suppose that the subgraph H has
F(H )=2. By (8), G is reduced, and so by Theorem 1.2(c), H is also
reduced. Now, Theorem 1.3 implies that either H # CL (in which case
Theorem 1.2(b) implies H=K1 , since H is reduced, and hence we have the
contradiction given by 2=F(H )=F(K1)=0), or the reduction of H is K2, t

for some t�2. In the latter case, since H is already reduced, H$K2, t . But
then H contains a 4-cycle of G, contrary to Lemma 3.2. K

By Lemmas 3.2 and 3.3, neither (b) nor (c) of Theorem 3.1 fails. There-
fore, by the remark preceding Lemma 3.2, (a) must fail. Hence G has an
edge xz such that

d(x) and d(z) are even. (12)

Let y # N(x)&z, so that yxz is a path in G, where F(G)=3. We define
a tree decomposition of G with respect to yxz to be an ordered pair (T, U )
of trees in G such that U is a tree spanning G&[ y, x, z] and T=G&E(U )
is a spanning tree of G. A tree decomposition with respect to yxz is not
regarded as the same as a tree decomposition with respect to zxy.

Let w be the vertex of G�xz corresponding to xz.

Lemma 3.4. Both

F(G�xz)=2, (13)

129SUPEREULERIAN GRAPHS
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and G has a tree decomposition (T, U) with respect to yxz, such that
(T�xz, U ) is the corresponding tree decomposition of G�xz with respect to yw.
Furthermore, G�xz has no nontrivial 2-edge-connected subgraph H with
F(H )�1.

Proof. By (8), G is reduced, and so it follows from Theorem 1.2(d) that
G has no nontrivial 2-edge-connected subgraph H with F(H )�1. Hence,
a(G�xz)�2, by Theorem 1.1 (for if a(G�xz)>2 then Theorem 1.1 asserts
that G�xz has a 2-edge-connected subgraph H1 with |E(H1)|>
2 |V(H1)|&2; and so E(H1) or E(H1) _ [xz] induces in G a nontrivial
2-edge-connected subgraph H violating F(H )�1, a contradiction). Thus
by (1) and (7), we have (13), and G�xz has no 2-edge-connected subgraph
H0 with F(H0)=0. By (1) and Lemma 3.3 and by an imitation of that
prior argument in parentheses in this proof, G�xz has no nontrivial 2-edge-
connected subgraph H satisfying F(H )�1 (the last part of the lemma).
Hence, G�xz satisfies the hypothesis of Theorem 2.1. Recall that w is the vertex
of G�xz corresponding to xz. Then yw # E(G�xz), and so by Theorem 2.1,
G�xz has a tree decomposition with respect to yw. This induces a tree
decomposition (T, U ) of G with respect to yxz, where (T�xz, U ) is the
corresponding tree decomposition of G�xz with respect to yw. K

Lemma 3.5. G�xz # Fw .

Proof. We know that }$(G)=3, so }$(G�xz)�3; i.e., G�xz satisfies (i) of
the definition of Fw . By (13) of Lemma 3.4, G�xz satisfies (ii) of the defini-
tion of Fw , and by the last part of Lemma 3.4, G�xz satisfies (iii). By
Lemma 3.2 and the definition of w, G�xz&w has no 4-cycle, and by (8) and
the definition of w, G�xz&w is reduced. Hence (iv) holds, and so Lemma 3.5
is proved. K

Lemma 3.6. d( y) is odd.

Proof. By way of contradiction, suppose d( y) is even. By Lemma 3.4,
G has a tree decomposition (T, U ) with respect to yxz. By (12) and since
d( y) is even, O(G)�V(U ). Hence by Theorem 1.4, G # SL, contrary
to (9). K

Define y1 , ..., yr by

N( y)=[x, y1 , y2 , ..., yr], (14)

where }$(G)�3 implies r�2. Recall that w is the vertex of G�xz corresponding
to xz. By Lemma 3.5 and Theorem 2.3, G�xz has a tree decomposition with
respect to yw such that

Y1=[ y1], Y2=[ y2], (15)
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where Yi is the component of T&[ y, w] containing yi . Notice that this
tree decomposition of G�xz with respect to yw induces a corresponding tree
decomposition (T, U ) of G with respect to yxz, where the correspondence
is given in Lemma 3.4. Furthermore, we can define Yi (i=1, 2) to be the
component of T&[ y, x, z] containing yi , and both (14) and (15) hold for
this tree decomposition of G with respect to yxz, just as (2) and (15) hold
for the corresponding tree decomposition of G�xz with respect to yw.
Denote

NU ( y1)=[u1 , u2 , ..., ut], NU ( y2)=[v1 , v2 , ..., vk]. (16)

Also, denote by Ui (1�i�t) the component of U&y1 containing ui , and
denote by Vi (1�i�k) the component of U&y2 containing vi . Without
loss of generality, suppose

y2 # V(U1), y1 # V(V1). (17)

For each ui (1�i�t) there is a unique vertex u$i # N( y) _ N(w)&[ y, w]
lying in the same component of T&[ y, w] as ui . Likewise, for each vi

(1�i�k), there is a unique vertex v$i # N( y) _ N(w)&[ y, w] in the same
component of T&[ y, w] as vi .

A theta graph 3 consists of exactly three paths that connect two vertices
of degree 3. The proof for Lemma 3.7 is routine.

Lemma 3.7. Let T be a connected spanning subgraph of G and let
U=G&E(T ). Each of the following holds:

(i) Suppose that e # E(U ). If e$ # E(T ) lies in a cycle of T+e, the
T $=T&e$+e is also a spanning connected subgraph of G.

(ii) Let e, f # E(U) be such that T+e+f has a theta graph 3. If
e$, f $ # (T ) & E(3) and 3&[e$, f $] is connected, then T $=T+e+f&e$&f $
is a spanning connected subgraph of G.

Lemma 3.8. Each Ui (1�i�t) and each Vi (1�i�k) has an odd number
of vertices in O(G).

Proof. We only present the proof for the Ui 's, since the proof for the
Vi 's is similar. By contradiction, we assume that for some i (1�i�t),
|V(Ui) & O(G)| is even. Note that yy1 is in the unique cycle of T+y1ui . By
Lemma 3.7(i), T $=T+y1 ui&yy1 is a spanning tree of G and G&E(T $)
has four components [x], [z], Ui , and U&V(Ui)+yy1 , each of which has
evenly many vertices in O(G). By Theorem 1.4, G # SL, contrary to (6). K

Let Pj denote the unique (uj , u$j)-path in T&[ y, w] and let Qj denote
the unique (vj , v$j)-path in T&[ y, w].
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Lemma 3.9. Both V(Pi)�V(Ui) (1�i�t) and V(Qi)�V(Vi) (1�i�k).

Proof. We only present the proof for the Pi 's, since the proof for the
Qi 's is similar. By contradiction, assume that V(Pj)�3 V(Uj) for some j
(1� j�t). Let T0 be the smallest subtree of T that contains every edge in
�t

i=1 E(Pi) whose ends are in distinct Ui 's. Then E(T0){<. Let e # E(T0)
be an edge incident with an endvertex (vertex of degree 1) of T0 , and
choose j so that e # E(Pj). Note that e has exactly one end in Uj (the end
closer on Pj to uj), and that e separates ui from uj in T for any i{j.
Suppose, without loss of generality, that the end of e outside V(Uj) is in
V(Ui) for some i{j. Thus ui and uj are in distinct components of T&e.
Also, T+y1ui+y1 uj has a theta graph 3 in which y1 has degree 3 and
3&e&yy1 is connected. By Lemma 3.7(ii), T $=T+y1 ui+y1uj&e&yy1

is a spanning tree of G, and G&E(T $) has four components [x], [z],
(Ui _ Uj)+e and U&V(Ui _ Uj)+yy1 . By Lemma 3.8, each of these four
components has evenly many vertices in O(G). By Theorem 1.4, G # SL,
contrary to (6). K

Lemma 3.10. Each u$i (1�i�t) and each v$i (1�i�k) are adjacent in
G�xz to w.

Proof. Suppose, by contradiction, that for some j (1�i�t), u$j # N( y).
By Lemma 3.9, u$j # V(Uj). Note that the cycle in T+y1uj contains yu$j . By
Lemma 3.7(i), T $=T+y1 uj&yu$j is a spanning tree of G, such that
G&E(T $) has four components [x], [z], Uj+yu$j , and U&V(Uj). By
Lemma 3.6, each of these four components has an even number of vertices
in O(G), and so by Theorem 1.4, G # SL, contrary to (9). K

Hence in G we can define u$i (1�i�t) to be the sole vertex of
T&[x, y, z] adjacent in T to one of [x, y, z], such that ui and u$i are in the
same component of T&[x, y, z]; and since u$i in G�xz is adjacent to w, we
have in G that

u$i # N(x) _ N(z). (18)

Likewise, define v$i to be the sole vertex of T&[x, y, z] adjacent in T to
one of [x, y, z], such that vi and v$i lie in the same component of
T&[x, y, z]. By Lemma 3.10,

v$i # N(x) _ N(z). (19)

Lemma 3.11. |V(U1 & V1) & O(G)| is odd. Also, d( y1)�t (mod 2), and
d( y2)�k (mod 2).
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Proof. By (15) and the definitions of Ui and Vi ,

V(U1)=V(U1 & V1) _ [ y2] _ .
k

i=2

V(Vi). (20)

By Lemma 3.8, |V(Vi) & O(G)| is odd (2�i�k). By (16) and

k+1=dU ( y2)+1=d( y2), (21)

y2 # O(G) if and only if k is even. It follows that [ y2] _ �k
i=2 V(Vi) must

have evenly many vertices in O(G). This fact, the fact that |V(U1) & O(G)| is
odd, and (20) together imply the first part of Lemma 3.11. From (21) comes
d( y2)�k (mod 2), and a similar argument gives d( y1)�t (mod 2). K

Case 1. Suppose that u$2 , v$2 # N(z). Define

T $=T+[ y1u2 , y2v2 , y1u1]&[u$2z, v$2z, yy1].

We claim that T $ is a spanning tree of G and that each component of
G&E(T $) has evenly many vertices in O(G).

To see the first claim, consider the graph

H=T+[ y1u2 , y2v2 , y1u1].

Let H0 be the maximal 2-edge-connected subgraph in H. Either u$1 x or u$1z
is an edge of T, but not both.

Suppose u$1x # E(T ). Then by Lemma 3.9 and the hypothesis of Case 1,
H0 is a subdivision of K4 whose degree 3 vertices are [ y1 , y, x, z] and
whose six arcs are yy1 , yx, xz, P2 _ [u$2 z, y1 u2], Q2 _ [v$2z, y2 v2 , yy2], and
P1 _ [ y1 u1 , u$1 x].

If u$1 # E(T ) then by Lemma 3.9 and the hypothesis of Case 1, H0 has z
of degree 4 and both y and y1 of degree 3, and these three vertices are
joined by the five arcs yy1 , yxz, P2 _ [u$2 z, y1 u2], P1 _ [ y1u1 , u$1 z], and
Q2 _ [v$2 z, y2v2 , yy2].

In either case the edges u$2z, v$2 z, and yy1 lie on separate arcs of H0 and
when they are removed from H, the resulting graph T $ is a tree spanning
G. The first claim thus holds.

In either case the four components of G&E(T $) are [x], U2 _ V2 _

[u$2z, v$2 z], U1&V(V2), and (U _ [ yy1)&(V(U1) _ V(U2)). By Lemmas 3.8
and 3.11 and by (12) and (15), O(G) has evenly many vertices in each
component of G&E(T $). Hence by Theorem 1.4, G # SL, contrary to (9).
This concludes Case 1.

Case 2. Suppose that u$2 , v$2 # N(x). Imitate Case 1, interchanging z
and x. (In addition to the interchange of z and x, there are minor alterations
in the list of the six arcs of H0 .)
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Case 3. Suppose that u$2 # N(x) and v$2 # N(z). (This is essentially the
same as the case where u$2 # N(z) and v$2 # N(x), and so we need not consider
that case.) Define

T $=T _ [ y1 u2 , y2v1]&[u$2x, xy].

First we show that T $ is a spanning tree of G. Consider the graph

H=T _ [ y1u2 , y2v1],

and note that H contains a theta graph whose degree 3 vertices are x and
y. The edges xu$2 and xy lie on separate arcs of this theta graph, and when
they are removed from H, we get the graph T $ that is a tree spanning G.

The four components of G&E(T $) are [z], U2 _ [u$2x, xy], V1&V(U2),
and U&V(V1). By Lemmas 3.8 and 3.11, by (12), and by (15), each of
these components has evenly many vertices in O(G). Hence, by Theorem 1.4,
G # SL, contrary to (9). This proves Case 3.

By (18) and (19), these cases exhaust all possibilities. Hence, Theorem 3.1
is proved. K

Jaeger [12] proved that a 4-edge-connected graph is supereulerian. A
consequence of (c) of Theorem 1.3 is that a 3-edge-connected graph with
at most nine edge cuts of size 3 is both supereulerian and collapsible [6].
Here we use Theorem 3.1 to improve that result.

Theorem 3.12. Let G be a 3-edge-connected graph. If G has at most 10
edge cuts of size 3, then exactly one of these holds:

(a) G # SL;

(b) The reduction of G is the Petersen graph.

Proof. Suppose that G is a 3-edge-connected graph with at most 10
edge cuts of size 3. By way of contradiction, suppose that G is a smallest
counterexample to Theorem 3.12. This implies that

G � SL (22)

and that

G is reduced. (23)

The justification for (23) is this: if G$ is the reduction of G, then }$(G$)�
}$(G)�3; G$ has no more edge cuts of size 3 than does G;

G # SL � G$ # SL,
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by Theorem 1.2(a); the reduction of G is the Petersen graph if and only if
the reduction of G$ is the Petersen graph; and G is assumed to be the
smallest counterexample to Theorem 3.12.

Since G is reduced, Theorem 1.2(d) implies a(G)�2, and so (1) holds.
Let n3 be the number of vertices of degree 3 in G. By the hypothesis of
Theorem 3.12, n3�10. By estimating in two ways the number of edge-vertex
incidences, and by recalling $(G)�3, we get

2 |E(G)|�4 |V(G)|&n3�4 |V(G)|&10, (24)

and some inequality in (24) is strict if either 2(G)>4 or n3<10. By (1)
and (24),

F(G)=2 |V(G)|&2&|E(G)|�3. (25)

If F(G)�2, then a conclusion of Theorem 1.3 holds: it must be conclusion
(a) since }$(G)�3. This implies G # CL�SL, contrary to the assumption
that G is a counterexample to Theorem 3.12.

Hence, F(G)=3 and so Theorem 3.1 applies to G, equality holds in (25),
and hence equality holds throughout (24). By the remark following (24),
2(G)�4, and n3=10. Let Si be the set of vertices of degree i in G for
i # [3, 4]. We have shown

|S3|=10 (26)

and

S3 _ S4=V(G). (27)

By (22), both (b) and (a) of Theorem 3.1 hold:

G has girth at least 5 (28)

and

S4 is an independent set in G. (29)

Lemma 3.13. If |S4|�4, then G[S3] has no isolated vertex.

Proof. By way of contradiction, suppose that w is an isolated vertex in
G[S3], where N(w)=[x, y, z]. Hence,

d(x)=d( y)=d(z)=4. (30)
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Let Hw be the subgraph of G induced by vertices at distance at most 2 from
w. By (28), H is acyclic. Hence N(x)&w, N( y)&w, and N(z)&w are disjoint
sets, each of order 3. By (26), (29), (30), and w # S3 , we must have

S3=N(x) _ N( y) _ N(z), (31)

and so any vertex of G not in Hw has degree 4. By |S4|�4 and since
|S4 & V(Hw)|=[x, y, z], G has a vertex v # S4&V(Hw). By (29), N(v)�
N(x) _ N( y) _ N(z). Since d(v)=4, this implies that v has two neighbors in
some member of [N(x), N( y), N(z)], say in N(z). These two neighbors and
[v, z] together induce a 4-cycle in G, contrary to (28). K

To obtain a bound on |S4|, we estimate in two ways the number of edges
with one end in S3 and one end in S4 . By Lemma 3.13 and (26), G[S3],
has at least five edges, thus accounting for at least 10 of the 3 |S3|=30
edge-vertex incidences at S3 . That leaves at most 20 incidences at S3 with
edges whose other end is in S4 . By (29), each vertex of S4 is incident with
exactly four edges joining S3 and S4 , and so 4 |S4|�20. Hence

|S4|�5,

and if equality holds, then |E(G[S3])|=5.

Case 1. Suppose that |S4|=5, and define H=G&E(G[S3]). As
remarked, |S4|=5, implies |E(G[S3])|=5, and so by Lemma 3.13, G[S3]$

5K2 . Therefore, each vertex of the subgraph H has degree 2 or 4; in particular,
each edge of H has one end of degree 2 and the other of degree 4, and so
we can prove G # SL merely by showing that H is connected since H is
a spanning subgraphs of G with eulerian components.

By way of contradiction, suppose that H is not connected, and let H6 be
the smaller component of H. Since H is bipartite (with bipartition S3 _ S4),
(28) implies that H has girth at least 6. Since G has order |S3|+|S4|=15,
H6 has order at most 7. The only eulerian bipartite graph of order at most
7 with girth at least 6 is the 6-cycle, and so H6$C6 . But each edge of H
must have one end of degree 2 and the other of degree 4, and so we have
a contradiction that precludes Case 1.

Case 2. Suppose that |S4|=4. Then by (27) and (29), of the 30 edge-
vertex incidences at S3 , exactly 16 are with edges whose other end is in S4 .
Hence,

|E(G[S3])|=(30&16)�2=7. (32)

We claim that

G[S3] is acyclic. (33)
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If not, then by (28), G[S3] has a cycle C of length s for some s�5. By
(32), s�7, and there are only 7&s edges of G[S3]&E(C), not enough to
satisfy the requirement of Lemma 3.13. This proves (33).

By (32), (33), and (26), G[S3] has three components, each a tree. We
claim

each component of G[S3] is a path. (34)

If not, then the three components of G[S3] collectively have at least seven
endvertices. Since each endvertex of G[S3] is adjacent to two members of
S4 , and since |S4|=4, some two of any seven endvertices of G[S3] are
adjacent to the same two vertices in S4 , contrary to (28). This proves (34).

By way of contradiction, suppose that some component of G[S3] has
order 3. By (32), that component is a K1, 2 , and we denote its center vertex
by w. Denote N(w)=[x, y, z], where G[[w, y, z]] is that K1, 2 of G[S3].
Hence, d(x)=4, and both N( y)&w and N(z)&w consist of two vertices of
degree 4. These five degree-4 vertices are distinct, by (28). This violates
|S4|=4 of Case 2.

Hence, no component of G[S3] has order 3, and by Lemma 3.13, no
component has order 1, either. The only partitions of the integer |S3| into
three integers, none of which is 1 or 3, are 10=2+2+6 and 10=2+
4+4. This fact and (34) imply that the three components of G[S3] are
each paths of even order. Thus, there is a perfect matching M�G[S3], and
|M|=5. Then G&M is a graph in which each vertex has degree 2 or 4,
and, except for two nonadjacent edges of G[S3]&M whose ends both
have degree 2 in G&M, each edge of G&M has one end of degree 2 and
one end of degree 4 in G&M. To prove G # SL, it suffices to prove that
G&M is connected.

By way of contradiction, suppose that G&M is disconnected, and let G6

be the smallest component of G&M. Since G&M has order 14, G6 is an
eulerian graph of order at most 7. The only eulerian graphs of order at
most 7 satisfying (28) are cycles of order 5, 6, and 7. But if G6 is such a
cycle, then there are more than two edges in G&M with both ends of
degree 2 in G&M, a contradiction. Hence, G&M is connected and so
G # SL. This concludes Case 2.

Case 3. Suppose |S4|�3. Then by (26) and (27), G has order at most
13. By Theorem 1.7, either G # SL or the reduction of G is the Petersen
graph.

This proves Theorem 3.12. K

Theorem 3.14. Let G be a 3-edge-connected graph. If G has at most 11
edge cuts of size 3, then exactly one of these holds:

137SUPEREULERIAN GRAPHS



F
ile

:5
82

B
16

66
16

.B
y:

B
V

.D
at

e:
08

:0
1:

96
.T

im
e:

15
:1

9
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

29
00

Si
gn

s:
22

57
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

(a) G # SL;

(b) The reduction of G is the Petersen graph;

(c) The reduction of G is nonsupereulerian graph of order between 17
and 19, with girth at least 5, with exactly 11 vertices of degree 3, and with
the remaining vertices independent and of degree 4;

Outline of Proof of Theorem 3.14. By Theorem 3.12, we can assume
that G has exactly 11 edge cuts of size 3. Imitate the proof of Theorem 3.12,
to show that G can again be presumed to be reduced, that the girth of G
is at least 5, and that G now has 11 vertices of degree 3, 1 vertex of degree 5,
and some indeterminate number n4 of vertices of degree 4. Also, F(G)=3,
and so Theorem 3.1 can be applied.

By Theorem 3.1(a), the vertices of degree 4 from an independent set in
G, and so 4n4 edges join them to the odd degree vertices of G. There are
3(11)+5(1)=38 edge-vertex incidences at the odd degree vertices of G,
and so 4n4�38. Hence, n4�9, and G has order at most 11+9+1=21.
With further arguments, one can improve this to |V(G)|�19.

Let w have degree 5 in G, and let Hw be the subgraph induced by the
vertices within distance 2 of w. Use Theorem 3.1(b) to show that at least
10 vertices lie at distance 2 from w, and hence that |V(G)|�1+5+
10=16. This bound can be improved to |V(G)|�17. K

Conjecture [5]. Let G be a 3-edge-connected graph. If G has at most
17 edge cuts of size 3, then exactly one of these holds:

(a) G # SL;

(b) G is contractible to the Petersen graph.

Snarks of order 18 [9] show that ``17'' of this conjecture is best possible.
Notice that conclusion (b) is weaker than (b) of Theorems 3.12 and 3.14.
Chen [7] has given examples of 3-regular 3-edge-connected reduced graphs
G of order 14 and 16 that are not supereulerian but that are reduced. They
are contractible to the Petersen graph, though. The one of order 14 has an
induced subgraph H isomorphic to K2, 3 such that G�H is the Petersen
graph. The one of order 16 is similarly constructed, where H is the 3-cube
minus a vertex.
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