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ABSTRACT

A graph is supereulerian if it has a spanning eulerian subgraph. There is a
reduction method to determine whether a graph is supereulerian, and it can
also be applied to study other concepts, e.g., hamiltonian line graphs, a cer-
tain type of double cycle cover, and the total interval number of a graph.
We outline the research on supereulerian graphs, the reduction method,
and its applications.

1. NOTATION

We follow the notation of Bondy and Murty [22], with these exceptions: a
graph has no loops, but multiple edges are allowed; the trivial graph K is
regarded as having infinite edge-connectivity; and the symbol E will nor-
mally refer to a subset of the edge set E(G) of a graph G, not to E (G) itself.

The graph of order 2 with 2 edges is called a 2-cycle and denoted C. Let
H be a subgraph of G. The contraction G/H is the graph obtained from G
by contracting all edges of H and deleting:any resulting loops. For a graph
G, denote

O(G) = {odd-degree vertices of G} .
A graph with O(G) = & is called an even graph. A graph is eulerian if it is

connected and even. We call a graph G supereulerian if G has a spanning
eulerian subgraph. Regard K; as supereulerian. Denote

$<¥ = {supereulerian graphs} .

Let G be a graph. The line graph of G (called an edge graph in [22]) is
denoted L(G), it has vertex set E(G), where ¢,¢’ € E(G) are adjacent ver-
tices in L(G) whenever e and €' are adjacent edges in G.
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Let & be a family of graphs, let G be a graph, and let k = 0 be an integer.
If there is a graph G, € & such that G can be obtained from G, by remov-
ing at most k edges, then G is said to be at most k edges short of being in &.
For a graph G, we write F(G) = k if k is the least nonnegative integer such
that G is at most k edges short of having 2 edge-disjoint spanning trees.

2. INTRODUCTION

In this paper, we survey the research on the graph family $& of supereule-
rian graphs and on an associated reduction method for determining mem-
bership in $E. Certain related problems are also discussed.

Three old and important results on this topic are theorems of Euler [63],
Harary and Nash-Williams [81], and Jaeger [85].

Theorem 2.1 ([63],[83],[142], [128],[134],[110]). If G is a connected non-
trivial graph, then these are equivalent:

(a) G has a closed trail that uses each edge exactly once.

(b) G is eulerian.

(¢) G is an edge-disjoint union of cycles.

(d) The number of sets (including the empty set) of edges of G, each of
which is contained in a spanning tree of G, is odd.

(e) Every edge of G lies on an odd number of cycles. 1

The first complete published proof of (a) <= (b) of Theorem 2.1 was
due to C. Hierholzer [83] in 1873. Conditions (c); (d), and (e), respectively,
were due to Veblen [142], Shank [128], and McKee’s [110] modification of
Toida’s Theorem [134]. For a history, see [18], [126], and [147], and for a
review of related literature see [67], [101], and [102].

By definition and by (a) < (b), a nontrivial graph G is supereulerian
whenever G has a spanning closed trail. A trail T in G is called dominating
if each edge of G is either in T or adjacent to an edge in T. If a connected
graph has no dominating trail, then it is not supereulerian. The subdivision
graph S:(G) is obtained from G by inserting a new vertex into each edge.

Theorem 2.2 (Harary and Nash-Williams [81]). Let G be a graph not a
star. Then

(@) L(G) is hamiltonian if and only if G has a dominating closed trail;
(b) L(S1(G)) is hamiltonian if and only if G € gL, 1

Lesniak-Foster and Williamson [104] and S.-M. Zhan [149] noted that a
graph G has a dominating open trail if and only if L(G) has a hamilton
path.
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Theorem 2.3 (Jaeger [85]). Let G be a graph and let E C E(G). There is
an even subgraph H of G with E C E(H) if and only if E contains no bond
of G with odd cardinality. §

When E is the set of edges of one of two edge-disjoint spanning trees of
G, then E contains no bond of G, and so Theorem 2.3 implies:

Corollary 2.3A (Jaeger [85]). If G has two edge-disjoint spanning trees,
then G is supereulerian. |1

Corollary 2.3B (Boesch, Suffel, and Tindell [20]). Let G be a simple graph.
There is a simple eulerian spanning supergraph of G if and only if G is not
spanned by an odd complete bipartite graph. §

Corollary 2.3B was extended in [129].

A 3-regular graph is supereulerian if and only if it is hamiltonian. Pulley-
blank [125] noted that since the hamiltonian problem is NP-complete for
such graphs [74], so is the supereulerian problem. The hamiltonian line
graph problem is also NP-complete [17].

Recall that the vertex arboricity of a graph G is the minimum number of
classes into which V' (G) can be partitioned, such that each class induces
a forest in G. The following was announced by Jaeger [85], and a proof is

in [80].

Theorem 2.4 ([85],[80]). A planar graph G is supereulerian if and only if
its planar dual G* has vertex arboricity at most 2.

Chartrand and Kronk [50] had previously proved that a simple planar
graph G has vertex arboricity at most 3, and they cited the planar dual of
Tutte’s counterexample [136] to Tait’s conjecture [131] (that a bridgeless
planar 3-regular graph is supereulerian), to show that this bound is sharp
when G is 3-regular. Bosak [21] gave a counterexample of order 38 to Tait’s
conjecture.

3. REDUCTION THEOREMS

Let G be a graph and let H be a connected subgraph of G. Catlin [32] ob-
tained a sufficient condition for this equivalence to hold:

G EFL < GHEIFZL. (€))
By repeated applications of (1), the problem of determining whether G €

& can often be reduced to determining whether a much smaller graph
is in F&.
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Call a graph H collapsible if for every even set X C V (H) there is a span-
ning connected subgraph Hx of H such that O(Hy) = X. Denote

YL = {collapsible graphs}.

For example, K;, C,, and C; are collapsible, but C; & €<L. Also,
L C ¥L, and any collapsible graph is 2-edge-connected.

Theorem 3.1 (Catlin [32]). Let H be a subgraph of G. If H € €<, then
GEeEYL< GHEeEFL
and
GECL < GHe%ZL. 1

A more general result is Theorem 3 of [32]. This result and a criterion of
Cai [27] are harder to state. ‘

Conjecture (Catlin [39]). Let H be a graph. If H & €<, then there is a
supergraph G of H such that

GESL S GHESL. )

4. THE REDUCTION METHOD

A general reduction method is based upon Theorem 3.1. To apply Theo-
rem 3.1, it is useful to know a large class of collapsible graphs. The next
result gives a large class, and since £ C ¥, it improves Corollary 2.3A:

Theorem 4.1 [32]. If G is at most one edge short of having two edge-
disjoint spanning trees, then exactly one of these holds:

(@) G € €<,
(b) G has a single cut-edge.

To improve Theorem 4.1, Catlin [40] conjectured that any 2-edge-
connected graph that is at most 2 edges short of having two edge-disjoint
spanning trees is either collapsible or contractible to K,, for some ¢ = 2.

Let t:V(G) — Z. A subset F C E(G) is called a t-join if at each vertex
v € V(G), the number of incident edges in F is congruent to #(v) mod 2. It
is easily checked that any spanning tree of G contains a ¢-join, for any ¢ with
t(v) odd at evenly many vertices v. It follows that if G has two edge-disjoint
spanning trees, then G € 6. This is slightly weaker than Theorem 4.1.
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Theorem 4.2 [32]. Let H; and H, be collapsible subgraphs of a graph G. If
V(Hl) N V(Hz) # @, then H; U H, € L. 1

Any graph G has a unique set Hy, H, ..., H. of pairwise-disjoint maxi-
mal collapsible subgraphs, by Theorem 4.2. Since K, € €<, each vertex of
G is in some H; (1 = i =< ¢). Let G’ denote the graph obtained from G by
contracting each H; (1 < i =< ) to a distinct vertex. We call G’ the reduc-
tion of G, and a graph is called reduced if it is the reduction of some graph.
Thus, G € €< if and only if G' = K.

Theorem 4.3 [32]. A graph is reduced if and only if it has no nontrivial col-
lapsible subgraph. 1

Examples of reduced graphs include K, K, stars, K, (t € N), and the
Petersen graph (for more on this graph, see [52]). Also, a simple graph G is
reduced if the contraction of some edge of G yields K, , (¢ € N). H.-J. Lai
[99,100] showed that these are the only reduced graphs of diameter at most
2. Using this and Theorem 2.2, one can obtain Veldman’s result [145] that if
G has diameter at most 2 and order at least 4, then L(G) is hamiltonian.

Let G be a graph. If H is a connected reduced induced subgraph of G,
then G is reduced if and only if G/H is reduced [39]. For another construc-
tion of reduced graphs, see [41].

By repeated applications of Theorem 3.1,

GEYL =G EFL. (3)

Let G be a graph. The edge arboricity a,(G) of G is the minimum num-
ber of forests in G whose union contains G. Nash-Williams [112] proved

_ [EH)]
a:(G) = 55‘23}‘[|V(H)| - 1] ’

where the maximum is taken over all nontrivial subgraphs H of G.

Theorem 4.4 [32]. If G is a reduced graph, then a:(G) =< 2, any cycle of G
has length at least 4, and 8(G) = 3. 1

If G € €%, then G has three spanning trees Ti,T3,T; such that each
edge of G is in at most two members of {T}, T2, T5} [39]. Since K>, (¢t € N)
is reduced, the converse is false. However, the result is best possible, since
there are infinitely many collapsible graphs G of girth 4 with |E(G)| =
3([V(G)| — 1)/2 (see [33,35)).

Different reduction methods to treat 4-cycles appear in [35] and [98].

Extending a result of Chen [55], Chen and Lai [58] proved that the reduc-
tion of a connected simple graph G with 8(G) = 3 and order at most 11 is



182 JOURNAL OF GRAPH THEORY

either K, K>, or the Petersen graph. If G is a connected simple graph of
order at most 13 with 8(G) = 3, then either G € P& or the reduction of G
is K3, K12, or the Petersen graph. Chen [53] gave a reduced graph G of order
14 to show that “13” is best possible: let G be a 3-regular graph containing
a subgraph H, such that H is K, 3 and G/H is the Petersen graph. Catlin [43]
conjectured that any 3-edge-connected simple graph of order at most 17 is
either supereulerian, or it is contractible to the Petersen graph.

5. SUFFICIENT CONDITIONS

Numerous sufficient conditions for G € & have been expressed in terms
of lower bounds on degrees in G (see, e.g., [12], [26]-[28], [31], [32], [34],
[36], [53], [56]-[59], [104]-[106], [120], [144], [148]). Some of these sufficient
conditions even imply that G satisfies the hypothesis of Theorem 4.1, and the
hypothesis of that theorem can be satisfied by graphs with far fewer edges.

Degree conditions are often excessively restrictive, and good sufficient
conditions for a graph to be supereulerian can be found in terms of other
parameters. Sufficient conditions for G € < have been expressed in terms
of forbidden subgraphs, a requirement that each edge lies in a short cycle,
or a lower bound on the number of edges (see, e.g., [6],[26], [29], [32], [44],
[46],[98],[100],[118],[120]). Lai [98,100] showed that if a 2-connected
graph G has 8(G) = 3 and each edge lies in a cycle of length at most 4, then
G € €<. Paulraja [118,120] had conjectured that such graphs are supereu-
lerian. For more conditions, see [30] and [55], as well as Theorem 4.1.

Chen and Lai [57] proved that any reduced graph G of order n with
6(G) = 3 has a matching of size at least (n + 4)/3. They used this (in [57]
and [58]) to prove the following result, as well as some stronger results: If G
is a 3-edge-connected graph and if d(u) + d(v) = (n/5) — 2 for every edge
uv € E(G), then either G € ¥& or equality holds and G is contractible to
the Petersen graph. (This is related to a conjecture in [12].)

Sufficient conditions requiring relatively few edges are often expressed in
terms of edge-connectivity or in terms of the number of edge-disjoint span-
ning trees (e.g., Corollary 2.3A and Theorems 5.2, 6.3, 6.4, and 6.9 below).
The following relation between these properties follows from the theorem
of Tutte [139] and Nash-Williams [111] characterizing graphs with k edge-
disjoint spanning trees.

Theorem 5.1 (Catlin [39]). Let G be a graph and let kK € N. Then G is 2k-
edge-connected if and only if for any set E, of k edges of G, the subgraph
G — E; has at least k edge-disjoint spanning trees. §

Corollary 5.1A ([123],[79],[95]). For any k € N, a 2k-edge-connected
graph has k edge-disjoint spanning trees. 1 '
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For k = 2, the “=>” part of Theorem 5.1 was proved by Zhan [149], and
the corollary was obtained by Jaeger ([86], Prop. 8(b)) when k = 2.

By Corollary 5.1A and Corollary 2.3A, any 4-edge-connected graph is
supereulerian. These sufficient conditions were used in [19] and [73] with
different probabilistic models to show that almost all graphs are supereule-
rian. Palmer [117] gave a direct proof.

Barnette conjectured [8] that any 3-regular 3-connected bipartite planar
graph is supereulerian. Some 3-connected examples (Appendix III of [22],
and [64]) show that the assumption of planarity is required. Goodey [77] ob-
tained significant results for this problem, and an excellent account is found
in Fleischner’s book [69]. Other partial results on Barnette’s conjecture
have been obtained by Fleischner [65,68], by Fouquet and Thuillier [72], by
Peterson [121], by Holton, Manvel, and McKay [84], and by Plummer and
Pulleyblank [122]. Related conjectures are discussed in [70] and [72].

Several authors have studied closely related questions for which the reduc-
tion method still applies, such as whether a graph has a spanning trail (pos-
sibly open) (see [31],[47],[59], [144],[148], [149]), or such as this:

Theorem 5.2 [37]. Let k be a nonnegative integer and let G be a connected
graph. If F(G) =< 2k + 1, then exactly one of the following holds:

(a) G has a spanning connected subgraph with at most 2k vertices of odd
degree;

(b) G can be contracted to a tree of order 2k + 2 whose vertices all have
odd degree. §

6. APPLICATION: DOMINATING TRAILS

Any spanning trail is a dominating trail. Part (a) of Theorem 2.2 was an im-
portant motivation for studying dominating trails, because it gives a crite-
rion for a line graph to be hamiltonian. By Corollary 5.1A, Corollary 2.3A
and (a) of Theorem 2.2, the line graph of any 4-edge-connected graph is
hamiltonian. Zhan [149] proved that the line graph of a 4-edge-connected
graph is also hamiltonian connected. Thomassen [133] conjectured that ev-
ery 4-connected line graph is hamiltonian. Equivalent conjectures are dis-
cussed in [70], and Zhan [150] proved Thomassen’s Conjecture for the case
of 7-connected line graphs.

For other sufficient conditions for a graph to have a dominating trail,
[62], [82], [90], [92], [96]-[98], [100], [103], [104], [108], [113]-[115], [119],
[143]-[146], [148], [149]. The reduction method is not too useful for finding
dominating cycles or paths, but it can be applied to find dominating trails.

Let G be a graph, let G’ be its reduction, and let 6: V(G) — V(G') be the
mapping induced by the contraction G — G’ defining G'. For any v €
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V(G), vis called trivial if |0 "'(v)| = 1; vis called nontrivial otherwise. The
following theorem was used in [45], [46], [97], [98], and [100].

Theorem 6.1 ([32], Theorem 8(vii)). Let G be a graph and let G’ be the
reduction of G. Then G has a dominating closed trail if and only if G’ has
a closed trail containing at least one vertex of each edge of G’ and contain-
ing each nontrivial vertex of G'.

Dominating trails were used by Jiinger, Reinelt, and Pulleybiank [89]. For
any s € N, an s-partition of a graph G is a partition

E(G)=E1 UEzU UEk,

where |E|| = s(1 =i <k — 1), where 1 = |E,| = 5, and where G[E/] is a
connected subgraph (1 =i < k).

Theorem 6.2 ([89], Lemma 3.1). Any graph with a dominating trail has an
s-partition, for alls € N. 1

Jiinger, Reinelt, and Pulleyblank [89] used Theorem 6.2 and Corollary
2.3A (with a hypothesis of 4-edge-connectedness) to show

Theorem 6.3 [89]. Any 4-edge-connected graph has an s-partition, for all
seN. 1

They conjectured that any 3-edge-connected graph has an s-partition, for
all s € N. Some 3-edge-connected graphs have no dominating trail, but
Fleischner, Jackson, and Ash (see [68], Conjecture 25) conjectured that
every 3-regular cyclically 4-edge-connected graph has a dominating cycle.

By Theorem 5.1 with k = 2, the next result improves Theorem 6.3:

Theorem 6.4. If a connected graph G is at most 3 edges short of having
two edge-disjoint spanning trees, then exactly one of these holds:

(a) G has an s-partition, for all s € N;
(b) G has three cut edges that are not on one path, and none of them is
incident with a vertex of degree 1. 1

Theorem 6.4 is proved by combining Theorem 6.2 with the case k = 1 of
Theorem 5.2. The graph G of Figure 1 satisfies (b) of Theorem 6.4, and G
violates (a). In Figure 1, each oval represents a nontrivial subgraph of G that
has at least two edge-disjoint spanning trees and has the stated number
of edges.

Next we define the total interval number I(G) of a graph G. For
1 < i =< n, let v; be a finite union of disjoint closed intervals of real num-
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( s — 2 edges
< s — 2 edges )
C s — 2 edges

FIGURE 1. A graph with no s-partition.

bers. Denote by |v;| the number of intervals in v;. Define a graph G with
vertex set

V(G) = {vi,vs,...,un}

by regarding v; and v; (i # j) as adjacent in G if v; N v; # J. We say that
fv1,vs,...,V.} is a representation of G. Griggs and West [78] and Andreae
and Aigner [1] defined the total interval number 1(G) to be the minimum
value of 3, |vi|, among all representations of G. (The interval number of
G, defined by Trotter and Harary [135], is different: it is the minimum of
max<;=.|vi| over all representations of G.)

Andreae and Aigner [1] obtained an upper bound on I(G) in terms of
dominating trails, and Kratzke and West [93,94] noted that equality holds if
G is triangle-free:

Lemma 6.5 ([1],[93],[94]). Let k be a nonnegative integer. If a connected
graph G is at most k edges short of having a dominating trail, then

IG) = |EG)| + k +1, 4)
and if G is triangle-free, then equality holds in (4). 1§
To apply Lemma 6.5, use this routine extension of Theorem 6.1:

Theorem 6.6. Let G be a graph and let G’ be the reduction of G. Then G
is at most k edges short of having a dominating trail if and only if G’ is at
most k edges short of having a trail containing at least one vertex of each
edge of G’ and containing each nontrivial vertex of G. 1

Extending results of Andreae and Aignper [1] (who did the triangle-free
case), Kostochka [91] and Kratzke and West [93,94] obtained various re-
sults, including

Theorem 6.7 ([93,94]). If G is a planar graph of order n = 3, then I(G) =
2n — 3. 1
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Theorem 6.8 ([91,94]). If G is a connected graph with m = 2 edges, then
IG)=(m + 4)/4. 1

It is routine to combine Lemma 6.5 with Theorem 5.2 to get this:

Theorem 6.9. Let G be a connected graph and let k¥ be a nonnegative in-
teger. If F(G) = 2k + 1, then

IG) = |EG)|+k+1. %)

If also k = 1 and if equality holds in (5), then the reduction of G is K, 2+1,
and each vertex of degree 1 in this K 2+ is a nontrivial vertex. §

7. APPLICATION: CYCLE DOUBLE COVERS

A cycle double cover of a graph G is a collection 4 of cycles in G (multiplici-
ties allowed) such that each edge of G is in exactly two cycles in ‘6. Szekeres
[130] and Seymour [127] conjectured that any graph with no cut edge has a
cycle double cover. If G is 2-connected and planar, this conjecture is obvious:
let @ be the facial cycles of some planar embedding. Alspach and Zhang [2],
Goddyn [75,76], and Tarsi [132] have obtained significant partial results.
See also [68] and [87]. Here, we merely note an application of the reduction
method to a certain kind of cycle double cover related to &£ and €.

By (b) < (c) of Theorem 2.1, it is an equivalent conjecture that a graph
G with no cut-edge has a collection € of even subgraphs (multiplicities al-
lowed), such that each edge of G is in exactly two members of €. We call é
a double cover of G by even graphs. Celmins [48] and Preissmann [124] con-
jectured that any graph G with no cut edge has a double cover by at most
five even graphs. This is best possible, because the Petersen graph requires
five even graphs (all cycles) in a double cover.

Let 9 denote the family of graphs G with no cut edge, such that G has a
double cover by at most three even graphs. Equivalently, G € ¥; whenever
there is a partition E(G) = E; U E, U E; such that O(G) = O(G[E\]) for
1<i=23.Then G[E, U E,], G[E; U E;], and G[E, U E5] are the graphs
that form a cycle double cover. In this section, we review results concerning
the family &;. We are specifically interested in ¥, because it is related to &£
and because the reduction method for $¥ applies similarly to ¥3. Catlin
and Lai (see Theorem 6 of [43]) showed that £ C F.

The following is equivalent to a result of Tutte [138], it does not assume
the Four Color Theorem [3], and it is analogous to Theorem 2.4:

Theorem 7.1. For any planar graph G with planar dual G*, G € & if and
only if x(G*) = 4. 1
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There is a reduction method for determining membership in ¥; similar to
the reduction method for <. Here is the analogue of Theorem 3.1:

Theorem 7.2 [40]. Let G be a graph and let H be a subgraph of G. If H €
Q< or if H is a 4-cycle, then

GEHLSGHEeY. 1

If G is planar, then contraction of a face in G is equivalent to deletion of
a vertex in the planar dual G*. This observation and Theorems 7.1 and 7.2
(with H = C,) imply that a smallest counterexample G* to the Four Color
Conjecture would have 8(G*) = 5. This result is Theorem 6.4.4 in [116],
and it also follows from the more general Theorem 11.2.6 of Dirac in [116].

Another reduction method for determining membership in ¥; involves
the lifting of edges. Let G be a graph, let v € V(G), and let uv and vw be
distinct edges incident with u. Define G(uv,vw) to be the graph obtained
from G — {uv, vw} by adding the new edge uw. The first part of the follow-
ing result follows from a result of Fleischner [66] (and it follows from
Mader’s Lifting Theorem [107]):

Theorem 7.3. For any nontrivial graph G with no cut edge, and for any
vertex v € V(G) with d(v) # 3, there are incident edges uv and vw in E(G)
such that G(uv, vw) has no cut edge. Furthermore, G € ¥; if G(uv, vw) € 5.

Suppose G is a graph that is not an even graph and that G has no cut
edge. Repeated applications of Theorem 7.3 will dissolve all vertices of even
degree and convert G into a 3-regular graph of order O(G) that is in ¥; only
if G € ¥;. The latter part of Theorem 7.3 holds for various other families
of graphs defined in terms of cycle double covers (see [87]), but not for $£.

Tutte [140] (also [141]) and Matthews [109] conjectured that if G & &
and if G has no cut edge, then some subgraph of G is contractible to the
Petersen graph. Alspach and Zhang [2] showed that a 3-regular graph has a
cycle double cover if it has no subgraph contractible to the Petersen graph.

Let G be a graph, let k = 2, and assign a direction to each edge of G. A
nowhere zero k-flow is an assignment of nonzero members of Z, to E(G)
such that at each vertex, the sum of the weights on the incoming edges
equals the sum of the weights on the outgoing edges. Clearly, G has a no-
where zero 2-flow if and only if G is even. It follows from the equivalence
(i) < (ii) of Theorem 5.5 of [88] that G € ¥ if and only G has a nowhere
zero 4-flow. If G has a nowhere zero k-flow, for some k, then G has a no-
where zero (k + 1)-flow. The Petersen graph has a nowhere zero 5-flow, but
no nowhere zero 4-flow. Seymour [127] showed that any graph with no cut
edge has a nowhere zero 6-flow, but it is not known if all such graphs have
a nowhere zero 5-flow.
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Jaeger [86] proved that any graph with no cut edge and no 3-cut has a no-
where zero 4-flow (i.e., it lies in ¥3), and Tutte ([22], unsolved problem 48)
conjectured that such a graph has a nowhere zero 3-flow. (A 3-cut is an
edge cut of three edges.) Using Theorem 7.2, Catlin generalized Jaeger’s re-
sult in [40] and it can be restated as follows:

Theorem 7.4. If a graph G with no cut edge has at most ten 3-cuts, then
exactly one of these holds:

(@ G € s
(b) G is contractible to the Petersen graph. 1

The hypothesis “at most ten” (in Theorem 7.4) can be improved, but a
result of this sort in [43] has a gap in its proof.

Consider a graph G embedded on a surface. A proper coloring of the
faces is called packed if at every vertex of degree at least 3, the incident
faces have been assigned at least three different colors, and if each edge is
incident with faces of two different colors. If G is a 3-regular graph embed-
ded on some surface, then any proper coloring must be packed.

Let G be a graph. A subgraph H of G evenly spans G if

(i) each vertex of G is of even degree in H;
(ii) each vertex of degree at least 3 has nonzero degree in H; and
(iii) each component of H contains evenly many members of O(G).

Call a graph G evenly spanned if some subgraph H exists that evenly spans
G. Let € denote the family of graphs that are evenly spanned. Of course,
the Petersen graph is not evenly spanned. Archdeacon [4] proved £ C €S
for graphs with minimum degree at least 3.

Let G be a graph. A 3-splitting of G is any 3-regular graph H that can be
converted to G by a sequence of edge contractions and subdivisions.

Theorem 7.5 ([4],[16],[42],[87]). Let G be a graph. These are equivalent:

(@) G €%¢;

(b) G has a 3-splitting H with x'(H) = 3;

(c) G embeds on some orientable surface with a packed 4-coloring of the
faces;

(d) G embeds on some surface with a packed 4-coloring of the faces;

(e) G embeds on some surface with a packed 3-coloring of the faces;

) G € Fs;

(2) G has a double cover by at most 4 even graphs. |

A proof of the equivalence of conditions (a)—(e) of Theorem 7.5 was
given by Archdeacon [4] for any graph G with 8(G) = 3, and he noted that
Tutte [137] had obtained that result for 3-regular graphs. The hypothesis
8(G) = 3 was removed in [42], where (f) was added to the list. The equiva-
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lence of (f) and (g) was proved in [16] (Prop. 4) and also in Prop. 3 of [87].
Other conditions equivalent to those of Theorem 7.5 can be found in [87]
and [88].

8. OTHER REMARKS

We have not reviewed related literature regarding directed graphs, matroids,
the Chinese postman’s problem, eulerian graphs, the interval number, cycle
decompositions, minimum covers, flows, and most of the literature on cycle
double covers not concerning ;. Some related literature involves embed-
dings of graphs on surfaces. Jaeger [87] reviewed various methods to attack
the cycle double cover conjecture, and he reviewed flow problems in [88].
Fleischner [68] reviewed work on cycle decompositions, and he has dis-
cussed problems involving decompositions of and transitions in eulerian
graphs [69]. For more references concerning hamiltonian 3-regular graphs,
see [84]. Research on snarks (graphs not in ¥; that are minimal in a certain
sense) is discussed in [60] and [71]. The reduction method for ¥ and ¥;
has been generalized to other families of graphs (see [39], and for a partial
summary, see [38] or [46]).
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