CHAPTER 10

The Arboricity of the Random Graph

- Paul A. Catlin*
Zhi-Hong Chen*

INTRODUCTION

The arboricity a(G) of a graph G is the minimum number of forests in G whose

union contains G. Nash-Williams [6] proved
|E(H)|

1 ' =
o) o(6) = x| a1 |
where the maximum runs over all nontrivial subgraphs H of G We shall show that
if G is the random graph, then the expression |E(H)|/([V(H)| — 1) attains its max-
imum in (1) if and only if H = G. This result also gives the maximum number of

edge-disjoint spanning trees in the random graph.

Let p be a fixed real number between 0 and 1. Write G(n,p) for the probability
space of simple graphs of order n, where the probability that any two distinct ver-
tices are adjacent is p, and where these probabilities are independent. Except in a

concluding remark, when we write of “the random graph” G or “almost every graph”
G, we are in the space G(n,p) and G has order n. This is Model A of Palmer [7].

We shall follow the notation of Bondy and Murty [2], and we use Landau’s nota-
tion O(f(n)) for a term which, after division by f(n), remains bounded as n — 00;

and o(f(n)) is a term which, after division by f(n), approaches 0 as n — 0o.
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SOME KNOWN RESULTS

For any connected graph G, define

|E(H))|

(2) v(G) = max V(—H_)l——_l

wherge the maximum is taken over all nontrivial subgraphs of G. Also define

min |E|
(3) n(G) = B (G- F)— 1’

where w(G — E) is the number of components of G— E. Let ¢(G) denote the maximum
number of edge-disjoint spanning trees in G. Tutte [10] and Nash-Williams [7] proved

(4) {(G) = [n(G)].
By (1) and (2), ‘
(5) a(G) = [v(G)].

Lemma 1 [3] For any connected graph G of order n, these are equivalent:
(a) |E(G)| = v(G)(n — 1);

(b) [E(G)] = n(G)(n —1);

() n(G)=~(G). 0

Also,
(6) n(G) <

if G is connected of order n. Although v(G) and 7(G) may not be integers, they are

<7(G)

often easier to use than a(G@) and #(G).

Lemma 2 For almost every graph G, the minimum degree is
6(G) = pn+ O((nlogn)¥/?). O

Stronger versions of Lemma 2 appear in [1].

Lemma 3 (Bollobés [1, Lemma 18]) Let € > 0. For almost every graph G, if r > n°
then every induced subgraph H of order r has

™ [B(H)] = p ( . ) +o(r?). O



THE ARBORICITY OF THE RANDOM GRAPH 121

THE MAIN RESULTS

Let G be a connected graph. (Almost all graphs are connected [7, p. 14].) Define
F(G) to be the family of nontrivial subgraphs H of G such that

0 +(6) = T

Thus, H € F(G) implies v(H) = 7(G). Payan [8] introduced the invariant v(G)
and he called G decomposible if G € F (@). Rucifiski and Vince [9] called G
strongly balanced if G € F(G), and they proved that there is a strongly balanced

graph with order n and with m edges if and only if

n
1§n—1§m§(2).

Also, they remarked [9, p. 255] that for such values of m and n, either n —1 =m or
there is a simple graph G of order n and size m with F(G) = {G}. Condition (a) of
Lemma 1 holds if and only if G € F(G).

Theorem 4 For the random graph G, F(G) = {G}.
Proof: Let G be a random graph of order n > 1. We may assume that G 1s
connected. Let H € F(G) and denote |V (H)| by r. We shall prove H = G. Clearly

r > 1 since G # K;.

Since H € F(G), H is an induced subgraph of G and

(9 1) = 4(6) = 2L
Since H is simple of order r, (9) gives
(10) r=rfl(;)zrfﬁmﬂn=w&n

By Lemma 3, with G in place of H,

CEVN Lman=p(§)+dﬁy
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By (10), (9), (6), and (11),
| _ 2AE@)|

r > 2vy(H) = 2v(G) = pn +o(n),

n—1

and so r is large enough so that Lemma 3 applies to the induced subgraph H. Thus,

(12) B = » ( ; ) (1-+o1)

By (9) and (12),

(13) ) = ZEN 2oy

By (6) and (11),

(14) s(ey 2 EEL_ P oy,

and so by (13), (9), and (14),

(15) E(140(1) = (H) = 4(G) = 5 + oln).
This gives

(16) V(G) - V(H)|=n—r=o0(n).

By way of contradiction, suppose that there is a vertex v € V(G) — V(H). Define

H,=G[V(H)U {v})].

Then |V(H,)| = r + 1. By (6) (with H, in place of G),

(17) |E(H)| <~ (Hy)r.

Since H € F(G),

(18) v(H,) < v(H).

By (17), (18), and (9),

(19) |E(H,)| < v(Hy)r < y(H)r = |E(H)| +~(H).

Notice that (19) implies

(20) |N(v) NV (H)| < v(H).

By (20), (16), (13), and r < n, a bound on the degree of v is

dv) < [N(@)nV(H)|+|V(G)-V(H)|
< (H) + o(n)

pr

= 3 (14 o(1)) + o(n)

< P14 o).
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contrary to Lemma 2. Hence, v does not exist, and so H must equal G. This proves
Theorem 4. O

Corollary 5 Almost every graph G satisfies

0= [

. n—1
and . [@J |
n—1

Proof: Combine Theorem 4 and (5) to get a(G). By Theorem 4, G satisfies (a) of
Lemma 1. Use Lemma 1 and (4) to get t(G). O

Corollary 6 For almost any graph G, a(G) — t(G) = 1.

Proof: By Corollary 5, 0 < a(G) — t(G) < 1, and by (4), (5), and (6),
|E(G)]

n—1

HG) <

< a(Q).

Since #(G) and a(G) are integers, we see that to prove Corollary 6 it suffices to show
that |E(G)|/(n — 1) is almost never an integer. This is routine and hence omitted.
O

REMARKS

Frieze and Luczak [4] determined t(G) for the graph G, when G is the random
graph underlying the digraph chosen randomly according to Palmer’s Model C. For
positive integers r and n with 1 < r < n—1, the sample space in Model C consists of
all labelled digraphs of order n in which each vertex has outdegree r. For each vertex

n—1

v, there are choices for the neighborhood of v in the digraph. The under-
T

lying graph thus has rn edges and hence cannot have r + 1 edge-disjoint spanning
trees. Frieze and Luczak [4] showed that the underlying graph almost always has r

edge-disjoint spanning trees.
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