Embedded Graphs, Facial Colorings, and Double
Cycle Covers
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We use the notation of Bondy and Murty [4], except that graphs have no loops.
Let H be a subgraph of G. The contraction G /H is the graph obtained from G by

contracting all edges of H and deleting any resulting loops. Denote
O(G) = {odd-degree vertices of G}.

The graph G is called an even graph if O(G) = 9, and an even graph is called

supereulerian if it also connected. Denote
SL = {supereulerian graphs}.

Let G be a graph embedded on a surface. A coloring of the faces is called packed
if at each vertex of degree at least 3, the incident faces have been assigned at least
three different colors, and if each edge is incident with faces of two different colors. If
G is 3-regular with no cut edge, then any proper facial coloring is packed. We shall
generalize a criterion of Archdeacon in order to give a reduction method to determine

whether a graph has a packed facial 3-coloring or 4-coloring on some surface.
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The subgraph H of a graph G is said to evenly span G if

(i) each vertex of G is of even degree in H;

(ii) each vertex of degree at least 3 in G has nonzero degree in H; and
(iii) each component of H contains evenly many vertices of O(G).

We say that G is evenly spanned if some subgraph H evenly spans G. Denote
&S = {evenly spanned graphs}.

Archdeacon [2] noted that SL C &S, and he proved for graphs with minimum degree
at least 3 that membership in £S is equivalent to the existence of a packed 3-coloring
of the faces of some embedding on some surface. The smallest 2-edge-connected graph

not evenly spanned is the Petersen graph.

Let G be a graph with no cut edge. A 3-splitting of G is any 3-regular graph H

that can be converted to G by a sequence of edge contractions and edge-subdivisions.

The following result was first proved by Tutte [15] for 3-regular graphs, and Arch-

deacon [2] obtained the present version:

Theorem 1 [2] Let G be a graph with §(G) > 3. The following are equivalent:
(a) G € £&S;

(b) G has a 3-splitting H with x'(H) = 3;

(c) G embeds on some orientable surface with a packed 4-coloring of the faces;
(d) G embeds on some surface with a packed 4-coloring of the faces;

(¢) G embeds on some surface with a packed 3-coloring of the faces. O
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tition E(G) = E; U E; U Ej such that O(G|E4)) = O(G) for all k € {1,2,3}. In [9]

we noted that S C Ss properly. A double cycle cover of G is a collection of cycles

of G (multiplicities allowed) such that each edge of G is in exactly iwo cycles in the
collection. A double cycle cover of G is called k-colorable, k > 2, if the collection of
cycles can be partitioned into k subcollections, where the cycles in each subcollection

are edge-disjoint (and hence induce an even subgraph of G).

Theorem 2 Let G be a graph. Then conditions (a) through (e) of Theorem 1 are
equivalent to each other, and they are equivalent to each of these:

(f) Ge Ss;

(g) G has a 3-colorable double cycle cover;

(h) G has a 4-colorable double cycle cover.

Proof: Any graph with a vertex of degree 1 satisfies none of the conditions (a)
through (h). Suppose that G is a smallest counterexample with §(G) = 2. By the
minimality of G, no component and no endblock of G is a cycle. Therefore, there is
a graph G' with 6(G') > 3 such that G can be obtained from G' by subdivisions of
edges. For each of the conditions (a) through (h), it is easy to check that G satisfies
that condition if and only if G' does. Thus, the first part of Theorem 2 follows by

applying Theorem 1 to G'.

The equivalence of (f) and (g) is easy, since G — Ej is an even graph if and only if
O(G|E:]) = O(G), where k € {1,2,3}. The equivalence of (g) and (h) was proved by

Bermond, Jackson, and Jaeger (3].
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To prove that (f) is equivalent to the other conditions, we shall prove (f) ¢ (a)
by proving S3 = £S. First, suppose that G € £§. Then G has a subgraph H that
evenly spans G, and hence that satisfies conditions (i), (ii}, and (iii) of the definition.
Define Es = E(G) — E(H). Then O(G[Es]) = O(G), by (i). Since H is an even graph,
it is an easy consequence of (iii) that there is a partition E(H) = E, U E; such that

O(G|E:]) = O(G), k € {1,2}. Therefore, G € S3. This proves £S C Ss.

Before proving S3 C €S, we first present a lemma and some notation. Let H be a
graph, let v € V(G), and let e and €' be distinct edges of H that are incident with v.
Denote by H(v,e,¢') the graph with edge set E(H) and with vertex set V(H) U {v'},
where v' ¢ V(H), where € and ¢’ are incident in H(v,e,e') with v' instead of v, and
where all other incidences in H(v,e,€') are the same as in H. This lemma is an easy

consequence of the definitions:

Lemma For any graph H, for any v € V(H), and for any pair {e,e'} of distinct
edges of H incident with v, H is an even graph if and only if H(v,e,¢') is an even

graph. O

Let G be a graph, and let F{G) = E, U E; U E3 and E(G) = E{ U E} U E} be two
partitions of E(G). For any vertex v € V(G) and for each k € {1,2,3}, denote by

di(v) (respectively, di(v)) the number of incidences of v with edges of E (respectively,
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with
(2) di(v) =d(v) (mod 2)
for all v € V(G) and k € {1,2,3}. Define the set T = T'(Es) by
T = {z € V(G) | ds(z) = d(z) > 3},

and suppose that the partition Ey U E; U Ej satisfying (1) and (2) has been chosen to

minimize |T|. We claim that T is empty.

By way of contradiction, suppose that |T| > 0. Then G has a vertex z € T, where

ds(z) = d(z) > 3. Define the set
S = {veV(GQ)|dv) =2and ds(v) = d(v) —2 > 0}.

If v € S then v is incident with edges e, and es (say), where e¢; € E; and e3 € E3.
By (1) and (2), G{E, U Ej3| is an even subgraph of G, and so the lemma implies that
G[E, U E)(v,e1,es) is an even subgraph of G(v,e1,€3), a graph of order |V(G)| + 1.
Apply the lemma in this way at each vertex v € S, to convert G into a graph G,
say, of order |V(G)| + |S|. Thus, Go[E, U E;4| is an even subgraph of Gy, and each

v € V(G,) — V(G) is incident in G, with exactly two edges, one in E, and one in Ej.

Since Go[E, U E3) is an even graph it has no cut edge, and so the vertex z is in a
cycle C, say, in Go[E; U Es]. We may also regard C as a closed trail in G[E, U Ej5| on

the same edge set. Define
E!=E AE(C); Ey=E; and E3=E3A E(C),

where E; A E(C) denotes the symmetric difference of Ey and E(C). Then EjUE;U E;

is a partition of E(G) satisfying d},(v) = d(v) (mod 2) for all v € V(G) and k € {1,2, 3}.
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Denote T' = T(E}). We claim T' C T properly. If v € V(G) —V(C) then ds(v) = ds(v)
andveT & veT. If v e V(C)N S, then by the construction of the even graph
Go[E1 U E;) containing C, v is incident with at least one edge in E; A E(C). Hence
vgT. ve (V(C)NT)— S then d(v) — 2 = ds(v) — 2 = dy(v) and di(v) =2,
andsov ¢ T'. f v € V(C) — (S UT) then either dj(v) # d(v) or d(v) < 3, and so
v & T'. Hence T' C T, and since z € T — T, this containment is proper, contrary to

the minimality of |T|. Thus, T =0, as claimed.

Define H = G[E; U E;]. We claim that H evenly spans G. By (1) and (2), H
satisfies (i) of the definition. Since T is empty, H satisfies (ii). If a component Ho of
H contains an odd number of vertices of O(G), then by (2), O(Ho[E}]) is that odd set
of vertices in O(G), an impossibility since |O(H|E1])| is even. Thus, (iii) holds and the

claim is proved. Hence G € £S and so Ss C £S. O

Corollary [2] If G satisfies any of the conditions (a) through (e), then G has a

double cycle cover. O

Define $€ to be the family of graphs H such that for any supergraph G of H, this

equivalence holds:

(3) GeSs < G/HE Ss.

Let Cg be the family of graphs G such that for any even subsets X,Y C V(G) there are
disjoint subsets Ex, Ey C E(G) such that O(G[Ex|) = X and O(G[Ey]) =Y. It was
proved |7, Corollary 13A] that C3U {C4} C 8¢, and so ¢ contains all cycles of length
at most 4. Also, Cs contains every graph that has two edge-disjoint spanning trees.
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the consideration of graphs with no nontrivial subgraphs in C3. An analogous reduc-
tion method for determining membership in S£ was introduced in [5]. Both of these

reduction methods are special cases of a more general method discussed in [6] and (8].

A lifting theorem of Fleischner [10] (see [11], p. 4) can also be used to investigate
membership in Ss. It can be applied either before or after (3) has been used repeatedly.
Suppose that v is a vertex of degree at least 4 in G. By Fleischner’s Theorem [10], for

some pair of distinct edges e and ¢ incident with v, G € S if and only if G(v,e, e') € Ss.

Szekeres [14] and Seymour [13] conjectured that any graph with no cut edge has
a double cycle cover. For graphs with no cut edge and having no subgraph that is a
subdivision of the Petersen graph, Matthews [12] (generalizing a conjecture of Tutte
(16] on 3-regular graphs) conjectured that they are in $s3, and Alspach and Zhang [1]

showed that they have a double cycle cover.
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