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Abstract

Any graph with no cut edge and with at most 13 edge cuts of size 3 either
has a double cycle cover formed by 3 subgraphs whose components are eulerian,
or it is contractible to the Petersen graph.

INTRODUCTION

For a graph G (with multiple edges allowed, but loops eschewed) we denote

O(G) = {odd degree vertices of G}.

A graph G is eulerian if O(G) = @ and G is connected. A graph G is even if O(G) = 0.
Define S3 to be the family of graphs G for which there is a partition E(G) = E1 U
E, U Ej3 satisfying

(1) O(GIE]) =0(G), 1<1<3.

The smallest 2-edge-connected graph not in S3 is the Petersen graph, called P.

A graph in 83 has a double cycle cover whose cycles can be partitioned into three
sets, each inducing an even subgraph of G. Each of the three classes in this partition
induces a subgraph of G of the form G — E;, 1 <1 <3, where E; is the set of the
definition of Ss. Conversely, a graph not in &3 has no such double cycle cover.

Let G be a graph. Assign a direction to each edge of G. For k > 2, a nowhere zero
k-flow is an assignment of nonzero members of Z, to E(G) (i.e., an assignment of
nonzero weights from the ring Z;) such that at each vertex of this directed graph,
the sum of the weights of the incoming edges minus the sum of the weights on the
outgoing edges is zero. Thus, G has a nowhere-zero 2-flow if and only if each com- -
ponent of G is eulerian, and one can check that G has a nowhere-zero 4-flow if and
only if G € S3. (It is very easy to show that G € S if and only if G has a “Ds-
flow” , in the terminology of [10]. What is called a nowhere-zero 4-flow here is called

a nowhere-zero Z,-flow in [10]. The equivalence of “G € S3” and “G has a 4-flow” in
this paper then follows from the equivalence (i) <=> (iz) of Theorem 5.5 of [10].) The

assignment of directions to the edges can be arbitrary, for if a direction assigned to
an edge is reversed, then we can always change the sign of the weight that we assign
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to that edge. If a graph G has a nowhere-zero k-flow, then for any larger integer h,
G has a nowhere-zero h-flow. Seymour [13] showed that any graph with no cut edge
has a nowhere-zero 6-flow. For a survey of results on nowhere-zero k-flows, see [10].

In this paper our primary interest concerns &3, the family of graphs having 4-
flows. The following conjecture was made by Tutte [14,15] and by Matthews [12].

Conjecture 1 [14,15], [12] Let G be a graph with no cut edge. If G ¢ S3 then some
subgraph of G is contractible to P.

A bond of G is any minimal set E of edges of G such that G — E has more com-
ponents than G. The size of a bond is the number of edges in it.

Theorem 1 Let G be a 2-edge-connected graph, and let E be a nontrivial bond of
size at most 3 in G. Denote the components of G — E by G, and G5. Then

GeS; < Both G/G1€S3&HdG/G2ES3. ]

Theorem 1 is not new (see, e.g., [9] for a partial proof), but for completeness, we
outline a proof here. The cases |E| = 2 and |E| = 3 are similar, and so we shall just
consider the case |E| = 3. A parity argument shows that |O(G) N V(G;)| is odd for
i € {1,2}, when |E| is odd. If G/G, € S3 and G/G; € S3, then there are partitions
EiuU EjU Ej of E(G/G;), 1 € {1,2}, satisfying (1). These partitions can be “pieced
together” to produce a partition E(G) = E; U E, U Ej, such that (1) holds. Hence,
G € S3. Conversely, suppose G € S3. Then there is a partition E(G) = E;U E,U Ej
satisfying (1). It induces corresponding partitions of E(G/G:) and E(G/G5), to show
that G/G,,G/G, € S3.

A bond is called trivial if all of its edges are incident with a single vertex. We

call a graph essentially k-edge-connected if all bonds of size less than k are trivial.
For example, P is essentially 4-edge-connected. Theorem 1 reduces the problem of
determining which graphs are in S to the case of essentially 4-edge-connected graphs.

Also, the contractions of Theorem 1 will not increase the number of bonds of size 3.
Therefore, we lose no generality in the following theorem in restricting our attention
to graphs that are essentially 4-edge-connected.

Jaeger [8] proved that any graph with no cut edge and with no bond of size 3 is
in S3. Tutte (see [1], unsolved problem) conjectured that any such graph also has a

3-flow. We shall improve Jaeger’s result as follows:

Theorem 2 Let G be an essentially 4-edge-connected graph with no cut edge. If
G has at most 13 bonds of size 3, then either G € S3 or G = P.

The proof of Theorem 2 appears in a subsequent section.
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Corollary 2A If a graph G with no cut edge has at most 13 bonds of size 3, then
exactly one of these holds:

(a) G € S3;

(b) G is contractible to the Petersen graph.

Proof: Combine Theorems 1 and 2 with P ¢ §3. O

Any graph that satisfies the hypothesis of either Theorem 2 or Corollary 2A also
satisfies Conjecture 1.

THE REDUCTION METHOD
Call a graph supereulerian if it has a spanning eulerian subgraph. Denote
SL = {supereulerian graphs}.

Also, call G collapsible if for every even set X C V(G), G has a spanning connected
subgraph Hy such that O(Hx) = X. Denote

CL = {collapsible graphs}.

For a graph G with a subgraph H, denote by G/H the graph obtained from G by
contracting all edges in H and by deleting any resulting loops. A reduction technique
for determining membership in S5 is based on these two results:

Theorem 3 [3] Let H be a subgraph of G. If H € CL or if H is a 4-cycle, then
GeES; < G/HeS;. O

Theorem 4 [2] If H is at most one edge short of having two edge-disjoint spanning
trees, then exactly one of these holds:

(a) H € CL;

(b) H has a cut edge. O

For a graph G, let F(G) be the smallest number of edges that must be added
to G, to create a graph with two edge-disjoint spanning trees. The edge-arboricity

of a graph G is the minimum number of edge-disjoint forests whose union contains
G. In [2], we showed that a graph with no nontrivial collapsible subgraph has edge-
arboricity at most 2. An easy consequence is the following result:

Theorem 5 Let G be a graph of order n. If G has no nontrivial collapsible sub-
graph, then
|[E(G)|+ F(G)=2n—-2. O

We shall use the following result, which has not yet appeared:
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Theorem 6 (Catlin and Lai [4]) SC C Ss.

Proof: Let G € SC. Then G has a spanning eulerian subgraph H;. Denote
E(G) - E(Hl) = {61, €9y eunny 61},

and let T" be a spanning tree of H; (and hence of G). Denote by C; the unique cycle
of T+ e; (1 £1¢<t), and consider the symmetric difference

H, = G[E(C1) A E(Co) A ... A E(CY)).
Clearly, H, is an even subgraph of G containing E(G) — E(H). Define

E, = E(H,) — E(H,), E,= E(H,) - E(H,), Es= E(H;)N E(H,).

Then O(G[E1]) = O(G) (1 £i < 3), and so G € 83, since B(G) = E;U E; U Es. The

cube minus a vertex is in §3 — SL, and so containment is proper. O

The proof above of Theorem 6 is due to Lai. A different proof of Theorem 6 in-
volves lifting edges (a concept defined below) to convert a spanning eulerian subgraph
H; of G into a hamilton cycle of a related graph, but the details are omitted here. It
is straightforward to show that the resulting hamiltonian graph is in &3 and that as
a result, G € §3. E. Palmer noted that an earlier “proof” of ours of Theorem 6 was
incorrect.

MADER'S REDUCTION AND SNARKS

Let G be a graph. For any distinct vertices v,w € V(G), define «'(v,w) to be the
minimum number of edges in E(G) whose removal separates v and w.

For any graph G with edges zy and yz incident with a vertex y, the graph obtained
from G — {zy,yz} by adding a new edge zz is called the graph obtained from G by
lifting {zy,yz}. The pair {zy,yz} is said to be lifted. If also that vertex y has de-
gree 2, then we say that y is dissolved when the pair {zy, yz} is lifted and y is deleted.

Theorem 7 (Mader [11]) Suppose that y € V(G) is not a cutvertex of G. If
d(y) > 4, then some pair of edges incident with y can be lifted so that in the resulting
graph G, any pair of distinct vertices v,w € V(G) — y satisfy

(2) K, (v, w) = Kg(v, w).
If d(y) = 2, then (2) holds when y is dissolved. O

A snark is any 3-regular essentially 4-edge-connected graph of girth at least 5 that

is not in S3. Since 3-regular graphs have even-order, snarks have even order.
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Theorem 8 [7] The only snark of order less than 18 is P. O

Let G be a graph with a cutvertex y. Let Gy and G, be nontrivial subgraphs of
G such that G4 U Gy = G and V(G1) N V(G2) = {y}. A graph that is the disjoint
union of éopies of Gy and G, will be said to be obtained from G by cleaving G at y.

The following result is a straightforward consequence of Theorem 7 and of the defi-
nition of S3. By repeated applications, it reduces the question of membership in S to
the special case of 3-regular graphs. (This reduction is basically due to Fleischner [6].)

Theorem 9 Let G be a graph with no cut edge and let y be a vertex whose degree
is either 2 or at least 4. If d(y) > 4 andif y is not a cutvertex of G, then define Go
as in Theorem 7. If d(y) = 2, then let G be the graph obtained when yq is dissolved.
If y is a cut-vertex, then define G to beé a graph obtained from G by cleaving G at
y. In either case, each of these holds: v

(a) Go has no cut edge;

(b) GoESg > G€83;

(c) If each block of G is 3-edge-connected, then each block of Gy is

3-edge-connected;

(d) If each block of G is essentially 4-edge-connected, then each block

of Gy is essentially 4-edge-connected. O

PROOF OF THEOREM 2

Suppose that G is a smallest counterexample to Theorem 2. Thus, G is 2-edge-
connected, G is essentially 4-edge-connected, G is not P, G ¢ S3, and G has at most
13 bonds of size 3.

Lemma 10 No nontrivial subgraph of G is in CL U {C4}.

Proof: By way of contradiction, suppose that G has a nontrivial subgraph H in
CL U {C4}. By Theorem 9, since G is 2-edge-connected, so is G/H; and since G
is essentially 4-edge-connected, so is G/H. Since G is essentially 4-edge-connected,
G/H # P. By G ¢ S5 and by Theorem:3, G/H ¢ Ss. Also, G/H cannot have more
bonds of size 3 than G. Hence, G/H is a smaller counterexample to Theorem 2, and
we have a contradiction. 0O

Lemma 11 The girth of G is at least. 5.
Proof- Use Lemma 10 and the fact that CL contains the 2-cycle and the 3-cycle. O

Lemma 12 The graph G is 3-edge-connected.

Proof: By way of contradiction, suppose that G has a bond FE of size 2. Denote
the components of G — E by G; and G,. Since G is essentially 4-edge-connected, E is
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a trivial bond, and so we lose no generality in assuming that Gy is just a single vertex
v of degree 2 in G. Contract an edge incident with v to get a smaller counterexample,
a contradiction. O

Lemma 13 All vertices of G have odd degree.

Proof: If y € V(G) has even degree, then define Gy as in Theorem 9. It can
be seen that some component of Gy is a counterexample with fewer edges than G,
contrary to the minimality of G. O

Let nz be the number of vertices of degree 3 in G, and let ns be the number of
vertices of degree at least 5. By Lemmas 12 and 13,

(3) ng + ng = n.
Counting edge-vertex incidences of G in two ways, we get from (3) that
(4) 2|E(G)| > 3ns + 5n5 = 4n + ns — na,

with equality only if A(G) < 5. By Lemma 10, by Theorem 5, and by (4),

(5) F(G) = 2n — 2~ |E(G)| < 5{ns — ns) — 2

with equality only if A(G) <5.

Case 1 Suppose that F(G) < 1. Since G has no cut edge, Theorem 4 gives us
G € CL. By definitions, CL C SL, and by Theorem 6, SC C Ss. Hence, G € Sa,

contrary to the supposition that G is a counterexample.

Case 2 Suppose that n < 17. If ny = 0, then G is 3-regular with girth at least
5 (by Lemma 11) and essential edge-connectivity at least 4. Hence, G is a snark of
order less than 18. By Theorem 8, G = P, a contradiction. Hence, ns > 0.

Let y be a vertex of degree at least 5. Apply Theorem 9 to obtain Go. Since
G ¢ S, (b) of Theorem 9 gives us Go ¢ S3. By (c) and (d), by Lemma 12, and
since G is essentially 4-edge-connected, Go is 3-edge-connected and essentially 4-
edge-connected. We can repeat this procedure (of lifting pairs of edges incident with
vertices of degree at least 5 and applying Theorem 9) until we finally obtain a graph,
say Gy, with no vertex of degree at least 5. Then Gy will also be 3-edge-connected
and essentially 4-edge-connected, and it follows from Lemma 13 that G, is 3-regular.
Also, G; € S3. Therefore, G, is a snark. Now the order of G, is the same as the
order of G, and by the hypothesis of this case, its order is less than 17. Hence, by
Theorem 8, G; = P, and so G has order |V(P)| = 10. Since ns > 0 and since G is a
graph of rder 10 that can be converted to P by lifting pairs of edges, it 1s routine to
show that the girth of G is less than 5. This contradicts Lemma 11, and so Case 2 fails.
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Case 3 Suppose that Cases 1 and 2 do not apply. Since Case 1 does not apply, we
have F(G) > 2, and so (5) gives

ns —ns > 8,
with equality only if A(G) < 5. By (3) and since Case 2 does not apply,
| ns+ns =n > 18.
By the hypothesis of Theorem 2, nz < 13. When combined, these relations force
ns =13 ns=5 n=18 A(G)=5

Hence, all 18 vertices have degree either 3 or 5. Denote by S5 the set of 5 vertices of
degree 5, and denote by 53 the set of 13 vertices of degree 3 in G.

Subcase 3A Suppose that Ss is an independent set in G. There are 25 edges in-
cident with Ss, and they join the 5 vertices of S5 with the 13 vertices of S3. It is
routine to check that some 4 of these 25 edges induce a 4-cycle in G (or that two of
these edges are parallel), contrary to Lemma 11.

Subcase 3B Suppose that G[Ss] contains a vertex of degree at least 2, say w. Then
|N(w)| = 5, and since G has girth at least 5 (by Lemma 11), the number of vertices
at distance 2 from w is

4S5 0 N(w)| + 218N N(w)] > 4(2) +2(3) = 14

Hence, G has order at least 1 + |N (w)}| + 14, contrary to n = 18.

Subcase 3C Suppose that Subcases 3A and 3B do not apply. Then Ss contains a
pair {u,v} of adjacent vertices of degree 5 in G, and their neighbors are in S3. By
Lemma 11,

(V) UN()) — {u,0}| =8
Let R be the set of vertices at distance 2 from {u,v}. Thus,

18 = n > |{u, v}] + |(N(w) UN(©)) — {u,0}| + R = 10+ R],

and so |R| < 8, with equality only if there is no vertex at distance 3 from {u,v}.
There are 8 edges of G with one end in N(u) — v and the other end in R, and by
Lemma 11, no two of them are incident with a common vertex of R. Hence, |R| =8,
each vertex of R is adjacent to exactly one vertex of N (u) — v, and there is no vertex
at distance 3 from {u, v}. Likewise, each vertex of R is adjacent to exactly one vertex
of N(v)—u. Thus, G[R] has |[RNSs| =3 vertices of degree 3 and |[RN S3| = 5 vertices
of degree 1. Since G[R] thus has degree sequence (1,1,1,1,1,3,3,3) and since G[R]
has no cycle of length at most 3 (Lemma 11), it can be checked easily that G[R] must
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have a vertex w € RN Ss adjacent to two other vertices of RN Ss. Thus, Subcase 3B
holds for w, a contradiction. This concludes Case 3, and the proof of Theorem 2. O

OTHER REMARKS

A weaker version of Corollary 2A, with “10” in place of “13”, can be shown to be
equivalent to Theorem 14 of [3].

Conjecture 2 Theorem 2 remains true if “13” is replaced by “17”.

Snarks of order 18 (see, e.g. [5]) show that “17” is best possible in Conjecture 2.
One can imitate the proof of Theorem 2, with “at most 17 bonds of size 3” in place
of “at most 13 bonds of size 3”, to show that if Conjecture 2 were false, then the
smallest counterexample would have order.between 18 and 26.

Conjecture 3 Let G be a 3-edge-connected graph. If G has at most 17 bonds of
size 3, then either G € SL or G is contractible to P.

The following result has been obtained by Catlin and Lai [4]:

Theorem 14 Let G be a 2-edge-connected graph. If F(G) < 2 then exactly one of
the following holds:

(a) G € &C;

(b) G is contractible to K,,, where t > 3.and t is odd. O

Theorem 14 could be used in place of Theorem 4, to prove Theorem 2. It would
be used in Case 1 of the proof, and it would simplify Case 3 dramatically. However,
Theorem 14 has not yet appeared, its proof is very long and complicated, and so its
use is avoided in this paper. '
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