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Let G be a 2-edge-connected graph of order n. For a matching M; consisting of three
independent edges of E(G), let ¥ (M;) denote the sum of the degrees of the six vertices
incident with M;. We show that if ¥ (M) =2n + 2 for all 3-matchings M, of G, then either G
has a spanning eulerian subgraph, or there is a connected subgraph H of G such that the
contraction G/H is K, for some odd t We describe the nature of this contraction. The
inequality is best-possible. We obtain several previous results as special cases.

We shall follow the notation of Bondy and Murty [4].

For xy € E(G), an elementary contraction of G is the graph G/xy obtained from
G by deleting {x, y} and inserting a new vertex v and edges joining v to each
we V(G — {x, y}) with exactly as many edges as join {x, y} to w in G. Thus, an
elementary contraction can create multiple edges where none existed in G. A
contraction of G is a graph G/H obtained from G by a sequence of elementary
contractions which contract a connected subgraph H of G to a vertex.

The degree of a vertex is the number of incident edges. The degree of v in G is
denoted d(v), and the degree of v in G, is denoted d,(v).

A matching My = {u,v,, upv,, . .., ugvi} of k edges will be called a k-
matching. Define ¥ (M,) by

2 (M) = ; d(u;) +d(vi)

when M, is a k-matching of G, and define

}13 (M) = ; d,(u;) + d,(v;),

when M, is a k-matching in G;. The vertex set of M, is denoted V(M,) or
V,(M,), respectively, according as M, is regarded as being in G or in G;.

By the definition of contractions, if G, is a contraction of G and if M, is a
k-matching in G,, then there is a corresponding k-matching in G, which will also

be called M,.

Theorem 1. Let the graph G, be a contraction of G, where G is a simple graph of
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96 P.A. Catlin

order n and n, denotes the order of G,. If
> (M3)=2n+2 (1)
for every 3-matching M, in G, then

> (M) =2n,+2 (2)

1

for every 3-matching M; in G,.

Proof. Let M; be a 3-matching in G,. Then M, is also a 3-matching in G. Let W
denote the vertices of V(G) — V(M,) that are identified with a vertex of V(M;) by
the contraction-mapping @: G — G,. Choose a subset E, ¢ E(G) so that G[E,] is
a forest whose six components span the six connected subgraphs G[6~'(v)],
where v runs over the six members of V(M;). Then ® may be considered to
contract each edge of E,. By definition, [E,| = |W|. Hence,

2 (M3) =Y, (Ms)— |E\|= (2n +2) — |W|

=22n—|W|)+2=2n,+2. O

We define a graph G to be collapsible if for every even set S < V(G), there is a
subgraph I'in G such that

(1) G — E(I') is connected; and
(it) The set S is the set of vertices of odd degree in I

This concept was defined in [8], as a tool for determining the existence of
spanning eulerian subgraphs. In [8] it was observed that a collapsible graph has a
spanning eulerian subgraph.

We define a graph G to be reduced if no nontrivial subgraph of G is collapsible.
The only graph that is both reduced and collapsible is K,. By definition, any
subgraph of a reduced graph is reduced.

The following two lemmas are proved in [8] (Corollary of Theorem 3 and
Theorem 7):

Lemma 1. Let H be a subgraph of G. If H is collapsible, then G is collapsible iff
G/H is collapsible.

Lemma 2. If |[E(G)|=2n — 3, then G is reduced if and only if G = K, or G = K.

In fact, as we observed in Theorem 1 of 8], if G has two edge-disjoint spanning
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trees, then G is collapsible. It is easy to show that the cycles C, and C; are
collapsible, whereas C,, is not collapsible if n = 4.

Lemma 3. The graph obtained from K ; by deleting one edge is collapsible.
Proof. By inspection. [l

Theorem 2. Let E < E(G) be a minimum edge set such that every component of
G-E is collapsible, and let G, denote the reduced graph obtained from G by
contracting each component of G — E to a single vertex. Then G is collapsible if
and only if G, = Ky; and G has a spanning eulerian subgraph if and only if G, has
a spanning eulerian subgraph.

This result is straightforward. The first part is trivial, and will be used in the
next proof. We omit the details, since we will not need the latter part here. This
result is contained in [8].

Theorems 1 and 2 reduce the problem of whether G, satisfying (1), is
collapsible to the special case where G is reduced. Before we present the main
result, we state and prove Theorem 3:

Theorem 3. Let G be a reduced graph of order n. If every 3-matching M; of
satisfies

S (M3)=2n+2, 4)

then exactly one of the following holds:

(a) G is collapsible (i.e. G = K,);

(b) G=K;,2(n=4);

(c) k'(G)=2 and for some edge e € E(G), G/e = K, ,_3(n=5);
(d) G=G,of Fig. 1;

(e) G is disconnected or G has a cut-edge.

The hypothesis (4) may hold vacuously. In Theorem 4, we drop the hypothesis

G, Gy G,

Fig. 1.
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that G is reduced, and we thus generalize Theorem 3. The only conclusion that

changes as Theorem 3 is generalized to Theorem 4 is (b).
We now show that the inequality (4) of Theorem 3 is sharp. These examples

also show that (18) of Theorem 4 is best-possible.

Consider the star H = K, 5, with center w and ends x4, x,, X3. For nonnegative
integers, $1,, S13, 523, define the graph G(sya, 13, 5,3) to be the graph of order
4+ 5., + 515 + 8§53 obtained from H by adding:

sy, vertices with neighborhood {x,, x};
5,3 vertices with neighborhood {x;, x5}; and
$,3 vertices with neighborhood {x,, x3}.

For example, G(1, 1, 1)= Q3 —v, a cube minus a vertex, and G(1,1,0) is the
graph G, of Fig. 1.

Let M, be a 3-matching in G(s, $13, 523). If w is not incident with an edge of
M;, then

> (M3) = i (d(x;)+2)=2(s12+s13+523) +9=2n+1.

If w is incident with an edge of M;, then

> (Ms)=2n+2.

Now, if s, = s,3 = 1 and 5,3 = 0, then w is necessarily incident with an edge of Ms.
Otherwise, if 5,,5,35,3 = 1, then there are some 3-matchings M; not covering w,
and for them,

> (Ms)=2n+1.

Therefore, the graphs G(si, $13, §23), With s§y585,353=1, show that (4) is
best-possible.

Another graph showing (4) to be best-possible is obtained by adding to K55 a
path of length 3, whose ends are distinct divalent vertices of the K; 3. This graph
has order 7.

Proof of Theorem 3. Let G be a graph of order n with no nontrivial collapsible
subgraph. Suppose, inductively, that G is a smallest counterexample. As a basis
for induction, note that the theorem holds if n <3. If any subgraph H of G has

|E(H)|=2|V(H)| -3,

then H=K, or H=K,, by Lemma 2, since a subgraph of a reduced graph is
reduced. Thus, for any nontrivial subgraph H of G,

|E(H)|<2|V(H)|-4 or H=K;, (5)
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and hence G is simple. Also, since K; is collapsible and G has no nontrivial
collapsible subgraph,

G is Ki-free. (6)

If |[E(G)|=2n -3, then by Lemma 2, G satisfies a conclusion of Theorem 3.
Hence, we suppose

|E(G)|<2n —4. (7)

Let M be a maximum matching of G.

Case 1. Suppose [M| =4, and set
M, = {u vy, UrU,, U3U5, UV = M,

where

d(us) +d(vs) = max (d(u;) + d(v;)). (8)

1=i<3

Set My = M, — u,v,. By (8) and (4),
> (M) =152 (M) =4(2n +2). 9)

Let E' ¢ E(G) denote the edges with both ends in U?_; {w;, v;}. By (5),
|E'|<2(8)—4=12. (10)
By (9), (7), and (10),

3@n+2)< ﬁ: d(u;) +d(v;)) <|E(G)| + |E'|

i=1
<Q2n-4)+12=2n+8. (11)

Therefore, n <8, and M, < E(G) implies n = 8. Equality holds in (11) and so
|[E(G)| =12. In the remainder of Case 1, we show that this graph G of order 8
satisfies Theorem 3.

If (e) of Theorem 3 holds for G, then we are done. Suppose otherwise. Then
6(G)=2 and G is not collapsible. Suppose 6(G) =2, and let v e V(G) have
degree 2 in G. Then

V(G —-v)| =T, |E(G — v)] = 10.

By way of contradiction, suppose that G —v has a cut-edge, say e. Since each
component of (G — v) — e satisfies (5), we have

10=|E(G —v)|=|[E(G—v)—e)| +1s2|V((G—v)—e)| —6+1=09,

a contradiction. By this and since G is reduced, G — v does not satisfy (a) or (e),
and since (4) holds for G — v, the induction hypothesis implies that G — v satisfies
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(b) or (c). If G — v satisfies (b), then |[M| <3, a contradiction. If G —v satisfies

(c), then |[E(G)| =11, also a contradiction.
Hence 6(G) =3, and so G must be 3-regular. We claim that each edge of G

lies in a C,. Suppose the edge wx is an exception, and set
N(w)={u, v, x}, N(x)={w,y, z}.

Since G is reduced, |N(w) U N(x)| = 6, and since wx is in no C4, {u, v, y, z} is an
independent set. Hence, E(G) consists of five edges incident with {x, w} and at
most 6 edges incident with the two remaining vertices of G, for a total of at most
11 edges, contrary to |E(G)| = 12. Hence, each edge of G is in a C,.

Let H,bea C,in G, and let H,=G — V(H,). Since G is reduced and 3-regular,
with |E(G)| =12, four edges of G are in H,, four edges join H, and H,, four
edges are in H,, and so H, is a C,, since G is reduced. Also, the four edges
joining H; and H, in G must be a matching, since G is 3-regular. Hence, either G
is a cube Q,, or there are nonadjacent edges uv, wxe E(G) such that
G — {uv, wx} + {ux, vw} is a cube Q3. In either case, G is collapsible, a

contradiction.
This concludes Case 1, and so

M| =<3.

Case 2. Suppose that a maximum matching of G has 3 edges. For any
maximum matching

M = {u vy, u,v,, u3vs} < E(G),
denote the six incident vertices
X =X(M) = {uy, uy, us, vy, V3, U3},
and set G’ = G[X] and E’' = E(G'). Also, define
Y=YM)=V(G)—-X(M).
By the maximality of M, each edge of G is incident with X, and so
E(G[Y]) =0 (12)
and edges of G' are those that are twice incident with X. Hence, if |[E’| =<5, then
(4) and (7) give
2n+2<D (M)=|E(G)| + |E'|<|E(G)|+5=<2n+1,

a contradiction. Therefore,

6=<|E'[. (13)

Lemma 4. If G' is a reduced graph of order 6 with at least 7 edges and a perfect
matching, then G' is one of the graphs G, G,, or G, of Fig. 1.
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Proof. A reduced graph is simple and K;-free. By inspection, the only simple
K;-free graphs of order 6 with 7 edges which contain a 3-matching and are not
collapsible, are G., G4, and G, of Fig. 1. O

Lemma S. If yeY, if |[E(G)|=2n—4, and if d(y)=2, then a conclusion of
Theorem 3 holds.

Proof of Lemma 5. Suppose |E(G)|=2n—4 and let y be a vertex of Y with
d(y)=2. Since G is reduced, so is G — y.

By the induction hypothesis, G —y satisfies one of (b), (c), (d), or (e) of
Theorem 3. Since |E(G)|=2n—4, G —y cannot satisfy (c) or (d). Since G —y
has a 3-matching (by the definition of Y), G —y cannot satisfy (b). Hence,
k'(G—-y)<1 If G-y is disconnected, then G satisfies (¢) of Theorem 3.
Hence, we can assume that G —y has a cut-edge e, where (G —y)—e has
components G, and G,. We have

|E(G))| + |E(Gy)| +3=|E(G)|=2n~4=2(n,+n,—1),
where n; = |V(G,)| (i =1, 2). Hence,
[E(G)| +E(G)I=(2n,—=2)+(2n,—2) - 1.
Without loss of generality, suppose
2n, — |E(G)| =2n, — |E(G),)| .
Since G is reduced, (5) implies
|E(G)| <2n;, -2 (1=i=?2),
and hence
|E(Gy)| =2n, -3, |E(Gy)| =2n,-2,

and since G is reduced, Lemma 2 implies G, = K, and G, = K,. Hence, G = K,
or G has a cut-edge, and so either (b) or (e) of Theorem 3 holds. 1

Proof of Theorem 3, continued. Either (e) of Theorem 3 holds, or d(y) =2 for
each y e Y. We consider two subcases.

2A. Suppose that each y € Y has d(y)=3. Set k =|Y| and

r=2, (d(y)—3).

yeY

By (12), we have |E(G)|=|E'| + ¥,.vd(y), and hence

2k +6)+2=2n+2<> (M) <|E(G)|+|E'|=3k +r+2|E'|.
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Hence,
ld<sk+r+2|E'|. (14)
Since G is reduced, (7), (12), and (13) give

2n—4=|E(G)|=|E'|+ D, d(y)=6+3k +r

yeY

=(12+2k-H)+(k+r-2)=CQn—-4)+(k+r—-2).
Thus,
k+r=<2.

By the definition of r, if r >0 then k& > 0. Since k and r are nonnegative integers,

(k, r)€{(0,0), (1,0), (2,0), (1, 1)}.

Suppose k=0. Then r=0, and so (14) gives |E'|=7. By Lemma 4,
G € {G,, G, G.}. Hence, Theorem 3 holds for G.

Suppose k=1 and r =1. Let y be the unique vertex of Y. Then d(y) =4 and
N(y) contains both ends of some edge of M, thus forming a K;. This contradicts

the assumption that G is reduced.
Suppose k=1 and r =0. By (14),

E'|=7.

By Lemma 5, G' = G —y is one of G,, G, or G,. By inspection, in any case, the
graph G has a nontrivial collapsible subgraph, a contradiction.
Suppose k =2. Then r =0. Hence, n =6+ k =8 and

|E(G)|=|E'| +6=12.
Hence, by (7),
|E(G)| = 12.

Since a maximum matching of G has only 3 edges, Tutte’s Matching Theorem
[12] (in combination with a parity argument) implies that there is a set S < V(G)
with |$| =3 such that (G — S)=5. Since n =8, G — S consists of 5 isolated
vertices. If (e) holds, we are done, and so we suppose that k'(G) = 2. Therefore,
for all weV(G)—S§, N(w)cS and d(w)=2. If two vertices, say w,;, w,e€
V(G) — S, both have degree 3, then for any ws € V(G) — (S U {w;, w,}), we have
d(w;) =2 and by Lemma 3, G[S U {w,, w,, w3}] is a collapsible subgraph of G.
But G has no nontrivial collapsible subgraph, and so at most one vertex of
V(G) — S has degree 3. Suppose that just one vertex w € V(G) — S has degree 3.
Since |E(G)| =12 and since V(G) — S is incident with 11 edges, there is an edge
in G[S]=G[N(w)], and so G has a K5, contrary to (6). Hence, each vertex of
V(G) — S has degree 2, and since |E(G)] =12, G[S] has 2 edges. By (6), each
weV(G)—S must be adjacent to the pair of nonadjacent vertices of G[S].
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Therefore, G = K, 4. But then G has no 3-matching, contrary to the assumption
of Case 2.

2B. Suppose that some y € Y has d(y) = 2.

Since }, (M;)=2n + 2 for any 3-matching M; of G, (4) holds for G —y, too.
Also, G —y is not collapsible, since G is reduced. By the induction hypothesis,
G — y satisfies a conclusion of Theorem 3, other than (a).

Suppose G — y satisfies (b) of Theorem 3. By (6) and Lemma 3, G =K, ,,_»,
since G is reduced. If G — y satisfies (c¢) of Theorem 3, then G/e =K, , 3, for
some edge e, since G is reduced and (4) holds. Suppose G — y satisfies (d) of
Theorem 3. Then for some 3-matching M; of G, ), (M;) =2n + 1, a contradiction.

Hence, '(G — y) =<1. We may assume that (e) fails for G. Let e be a cut-edge
of G —y, and denote by G, and G, the two components of (G —y) —e. We can
choose a 3-matching M; of G —y such that either e € M; or e separates edges of
M; in G —y. Hence, for the subgraph G’ induced by V(M;),

K(GY<1. (15)

If |E'| =8, then (15) implies that G' has a K3, contrary to (6). This and (13)
imply

6<|E'|=<T.

By (15) and Lemma 4, either |E'| =6 or G' =G..

First, suppose G' = G, and let xz € E’, where z has degree 1 in G'. We shall
reduce this to the case |[E'| =6. Let y € Y. Since M; < E’ is a maximum matching
of G, N(y)c V(G’). If all y e Y have z ¢ N(y), then (e) of Theorem 3 holds.
Hence, some y, € Y is adjacent to z. Let M" be a 3-matching containing y,z and
two edges of G’ — x. Then the subgraph G" of G, induced by V(M"), has an edge
set E” with |[E”| =6, since G is reduced. If no vertex of G — V(M") has degree 2,
then Case 2A applies with M = M". Hence, it suffices to consider the case
|E'| = 6.

Lets =Y,y (d(y) —2).

Then

> d(y)=s+2]Y],

yeY

and so by (7)

2|Y|+8=2n—4=|E(G)|=|E'|+ >, d(y)=6+s +2]Y],

yeY
which gives

2=s.
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By (4),

21|+ 14=2n+2<D (My))<|E(G)|+|E'|=(6+s+2]|Y])+6.

Hence,
2=s.

Therefore, 2 =s, and since equalities hold everywhere,
|E(G)| =2n —4.

By Lemma 5, a conclusion of Theorem 3 holds. This concludes Case 2.

Case 3. Suppose

M| = 2.
Let M = {uv, wx}, and set X = {u, v, w, x}. Define
Y=V(G)-X

We may assume
0(G)=2, (16)

for otherwise (e) of Theorem 3 holds. If Y =0, then (6), G = G[X] and (16)
imply G = K, ,, and (b) of Theorem 3 holds. Suppose, instead that

Y #6.
By the maximality of M, G[Y] is edgeless. Hence, by (6), for any y € Y, N(y) is

one of {u, w}, {4, x}, {v, w}, or {v, x}.
Let y, € Y. Without loss of generality, suppose
N(y) = {u, w}.
By the maximality of M, N(v) NY =9, for if instead
e Nv)NY,
then {vy,, uy,, wx} is a 3-matching. Likewise, N(x) N'Y =#@. Hence, by (6) and
(16), either

N@) = {u, w}, N(x)={u, w}
or

Nw)={u, x}, N(x) = {v, w}.
In the latter case, G[X U {y,}] = Cs, and if G[X U {y,}] is a proper subgraph of
the connected graph G, then M is not a maximum matching, a contradiction. In
the former case,

GlXu{ynH =Kz,
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and

dv)=dx)=d(y)=2, (17)
for otherwise M is not a maximum matching. If G[X U {y,}] = G, then (b) or (¢)
of Theorem 3 holds; if G[X U {y,}] is a proper subgraph of G, then by (17), any
y.€Y =y, has N(y,) ={u, w}, since d(y,)=2. Then G=K,,_,, and so (b)
holds.

Case 4. Finally, suppose
IM|=1.

By (6), G # K;. Hence, by the maximality of M, either G is disconnected or
G =K, ,-;- In either case, (e) holds.
This completes the proof of Theorem 3. O

Theorem 4. Let G be a 2-edge-connected simple graph of order n. If for every
3-matching M; of G.

2 (M3)=2n+2, (18)
then exactly one of the following holds:

(a) G is collapsible;
(b) For some integer t =2 and for some collapsible subgraph H of G,

G/H - KZ.U
and the contraction-mapping G — G/H maps H to a vertex of degree t in
K2,t;

(c) For some edge e € E(G), G/e =K, ,,_3 (n=5);
(d) G =G, of Fig. 1. .

Proof. The conclusions are mutually exclusive. Let E < E(G) be a minimal set

such that each component H,, H,, ..., H. of G — E is collapsible, and arrange
these components so that
\VH)| = |V(H,)|=---=|V(H,)]. (19)

Let G, denote the graph obtained from G by contracting each component of
G — E to a single vertex. Let

V(Gl) = {UI: Uy . .., Uc}

be arranged such that v, is the image of H; under the contraction-mapping G — G;
(I1=i=<c). We call G, the reduction of G.

By the minimality of E, no nontrivial subgraph of G, is collapsible. Hence, G,
is reduced. If G, = K, then (a) holds. Hence assume G, # K,. As in the proof of
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Theorem 3,
|E|<2c —3; (20)
G, hasno C3; and (21)
G, has no C, (G; is simple). (22)

Properties (21) and (22) imply that for any three distinct components H;, H;, H,
of G — E, at most two edges of E join them.

For a given 3-matching M; of G, let i(M;, E) denote the number of incidences
of V(M;) and E.

Since k'(G) =2, we have k'(G,;) = 2. Hence, ¢ =3.

Case 1. Suppose |V (H;)| =2.
Since Hj is collapsible, x'(H;) = 2. This and (19) imply
[V(H)| = |V(H)| = |V(H;)| = 3.
Choose ¢, € E(H;) for 1 =i =<3, and set
M, = {e,, e, e3}.

By (21) and (22), the subgraph G’ = G,[{v,, v, v;}] has at most two edges. The
edges of E(G') < E are the only edges of E with both ends incident in G with
V(H;) U V(H,) U V(H5). By this and (20),

i(M;, EY<|E|+2<2c—1. (23)
By (18),
2n+2<Z(M3)<§I2(IV(M)|—1)+i(M3, E). (24)

We subtract Y12 |V (H,)| from each side of (24) and we use (23) to get
2(c —3)+2$2<2 IV(Hi)|> +2<-6+2c—1,
4
a contradiction. Therefore, Case 1 is impossible.

Case 2. Suppose |V(H,)|=2, |V(H;)|=1, and that G — (V(H,) UV (H,)) has
an edge e;.
Since H, is collapsible, «'(H,) = 2. Together with (19) we have

[V(H)| = |V (H)| = 3.

Hence, we can choose e, € E(H,) and e, € E(H,) so that their ends are not joined
by E to either end of e;, because (21) and (22) imply that e, is joined by £ to at
most one vertex of H; (i <c). Let M; = {e,, e,, e5}. By our choice of ¢, and e,,
only e; and at most one other edge v,v, of E, if it exists, have two incidences
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Case 4. Suppose |V(H)|=2 and |V(H,)| = 1.
Let s denote the order of H,. Since H, is collapsible and nontrivial,

s =|V(H,)|=3. (28)

By Lemma 1, G/H, is not collapsible, and so Theorem 3 implies that either
G/H,=K,, for some t=2, or (G/H,)/e=K,, for some ¢t =2 and some e, or
G/H, =G, of Fig. 1. In the first of these three possibilities, H; is mapped to a
vertex of degree ¢ in K, ,, for otherwise (18) would be violated. Hence in this
case, (b) of Theorem 4 holds. It suffices to reduce the latter two cases to (c) and
(d) of Theorem 4. This we do next.

4A. Suppose that G/H, = G,.
We can choose a 3-matching M; < E(G) — E(H,) such that

> (My)<4+6+4+(V(H) —1)=|V(H)| +13,
Hence, by (18),

2IV(HY +5)+2=2n+2< 2 (M) <|V(H))| + 13,
and so |V (H,)| =<1, a contradiction.

4B. Suppose that G/H, is the subdivision of K, , of order ¢ + 3, where t =2. If
t =2, then a contradiction with (18) is easily obtained.

From (18) we deduce that, under the contraction-mapping G— G, H, i1s
mapped to a vertex of degree t. Hence there is a matching

M;= {elr €, e3}

in G — E(H,) such that both ends of e, have degree 2, one end of e, has degree ¢
and the other end has degree 2, and exactly one end of e, lies in V(H,), and thus
has degree at most ¢t + s — 1, while the other end of e; has degree 2. Hence,

DSM)<Q+2)+(+2)+(t+s—1+2)=2+s5+7. (29)
Since n =5+t +2, (18) and (29) give
s+t +2)+2=2n+2<> (My)<2u+s+7,

and so s =<1, a contradiction.

4C. Suppose that G/H, has an edge e = xy whose ends both have degree at
least 3, such that (G/H,)/e = K, , where t =2, and the vertex of K, , formed by
the contraction of e € E(G/H,) has degree .
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with V(M;). This and (20) imply

i(M,, E)<|E| +2<2c— 1. 25)
By (18),

24 2n<S (My) <2(V(H,)| = 1) + 20V (Hy)| - 1) + i(Ms, E),

and so by (25), we can subtract 2(|V (H,)| + |V (H,)|) on each side to get
2+2(c—=2)=2+2D |V(H)|<—4+2 -1,
i=3

a contradiction.

Case 3. Suppose |V(H,)| =2, |V(H5)| =1, and suppose G — (V(H,) U V(H,))
is edgeless.

Thus, in G, all edges are incident with {v,, v,}.

Let y € V(H,), for some i = 3. Since k'(G) =2, and since G — (V(H,) U V(H,))
is edgeless, (22) implies that N(y) overlaps both V(H,) and V(H,). Hence, by
(21), no edge of E joins V(H,) and V(H,). Hence,

G =K;,
for some ¢ =2. Also, by (19) and |V(H;)| =1,
d(y)=2. (26)

Since H, is collapsible and |V(H,)|=2, we have k'(H,)=2. This and (19)

imply
|V (H)| = |V (H,)| =3.

Choose e € E(H,) so that its ends are incident with the fewest possible number
of edges of E. Then we can choose e;=x,y,€ E and e; =x,y, € E such that
x,€ V(H,), x,e V(H,) and {e, e}, e;} is a matching, which we denote M;. Note
that y, and y, satisfy (26).

The only edges of E that could have both ends incident with V(M) are those
edges incident with {y,, y,}. By (26), there are at most four such edges, and so
(20) gives

i(Ms, EY<|E|+4<2c+1. (27)

We combine (27) with (18) and (19) to get
2n+2=< 3 (My) <2(|V(H)| - D)+ ((V(HY)| = 1) + ([V(H)| = 1) + i(Ms, E)
<2 |V(H,)| +2|V(H)| +2(c—2) +1
<22 V() +1

a contradiction. Therefore, Case 3 fails.
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Case 4. Suppose |V(H))| =2 and |V(H,)| = 1.
Let s denote the order of H,. Since H, is collapsible and nontrivial,

s=|V(H,)|=3. (28)

By Lemma 1, G/H, is not collapsible, and so Theorem 3 implies that either
G/H,=K,, for some t=2, or (G/H,)/e =K,, for some t=2 and some e, or
G/H, =G, of Fig. 1. In the first of these three possibilities, H; is mapped to a
vertex of degree ¢ in K, ,, for otherwise (18) would be violated. Hence in this
case, (b) of Theorem 4 holds. It suffices to reduce the latter two cases to (c¢) and
(d) of Theorem 4. This we do next.

4A. Suppose that G/H, = G,.
We can choose a 3-matching M; ¢ E(G) — E(H,) such that

D (M) <4+6+4+(V(H) —1)=|V(H) +13,
Hence, by (18),

2IV(H)| +5) +2=2n+2< 2 (M) <|V(Hy)| + 13,
and so |V(H,;)| <1, a contradiction.

4B. Suppose that G/H, is the subdivision of K, , of order ¢ + 3, where t = 2. If
t =2, then a contradiction with (18) is easily obtained.

From (18) we deduce that, under the contraction-mapping G— G,, H, is
mapped to a vertex of degree r. Hence there is a matching

M3 = {617 €7, 63}

in G — E(H,) such that both ends of e, have degree 2, one end of e, has degree ¢
and the other end has degree 2, and exactly one end of e; lies in V(H,), and thus
has degree at most ¢ + s — 1, while the other end of e, has degree 2. Hence,

DM)<SQHD U+ +(t+s—14+2)=22+5+7. (29)
Since n =5+t +2, (18) and (29) give
2s+t+2)+2=2n+2=<> (M) <2 +s+7,

and so s =<1, a contradiction.

4C. Suppose that G/H, has an edge e = xy whose ends both have degree at
least 3, such that (G/H,)/e = K, , where t =2, and the vertex of K, , formed by
the contraction of e € E(G/H,) has degree t.



Spanning Eulerian subgraphs and matchings 109

Since both ends of e have degree at least 3, we must have
t=4.

There are integers ¢, ¢, satisfying
t+ b=t (30)

such that in G/H,, we have d(x)=t; + 1 and d(y) =t,+ 1. It follows from (18)
that V(H,) N {x, y} #9. Without loss of generality, suppose x € V(H)), y¢
V(H,). Then n =5+t +2, and we can choose a matching

M;={e,, e, es}

in E(G)— E(H,), such that e, has ends of degree 2 and ¢, e, is incident with y and
has ends of degree 2 and ¢, + 1, and e; is incident with x and has ends of degree 2
and at most s + ¢, in G. Then by (18) and (30),

25 +2+6=2n+2< (My)

sQ2+0)+QR+6L+D)+2+s+1)
=2U+s+7,

and so s <1, a contradiction. Therefore, 4C and Case 4 are complete.

Case 5. 1f |V(H,)| = 1, then Theorem 3 applies directly. This proves Theorem
4. O

If (b) holds in Theorem 4, then (18) forces certain other restrictions that are
not stated explicitly in (b).

The following result is implied by Theorem 4. Its proof is straightforward and
hence omitted.

Corollary 1. Let G be a simple graph on n vertices. If
du) +dw)=3%(n+1) (31)

whenever uv € E(G), then exactly one of the following holds:
(a) G is collapsible;
(b) G=K;, ,(n=4);
(c) G = G(k) for some k =2, where G(k) is the graph of Fig. 2;
(d) G is disconnected or G has a cut-edge.

Corollary 2 (Catlin [7]). If the hypothesis of Corollary 1 holds, then exactly one of
the following holds:

(a) G has a spanning eulerian subgraph;

(by G=K,, »and nis odd, (n=5);

(c) G is disconnected or has a cut-edge.
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G(k)

Fig. 2.

Proof. Parts (a) and (b) of Corollary 2 follow from (a) and (b) of Corollary 1 and
by the fact that a collapsible graph has a spanning eulerian subgraph. The graph
G (k) of Fig. 2 has a spanning eulerian subgraph. [

Corollary 2 improves upon previous results due to Brualdi and Shanny [5],
Catlin [6], Clark [10], and Veldman ([14], Theorem 5). A closely related result on
hamiltonian line graphs was obtained independently by Catlin [7] and by
Benhocine, Clark, Kohler, and Veldman [3]:

Theorem 5. Let G be a simple graph of order n. If
d(u)y+dw)=3i2n+1) (32)

whenever uv € E(G), then exactly one of the following holds:
(a) L(G), the line graph of G, is hamiltonian,
(b) G is not cyclically 2-edge-connected.

Examples showing Corollary 2 to be best-possible are found among the
examples presented earlier that show that Theorems 3 and 4 are best-possible.

Theorem 6. Let G be a 2-edge-connected simple graph of order n. If

d(u) +d(v) +d(w)=n +1 (33)

for every independent subset {u, v, w} of V(G), then exactly one of the following
holds:

(a) G is collapsible;

(b) Ge{C4, Cs, K, 13, G} (see Fig. 1).

Proof. As in the proof of Theorem 4, we let E be a minimal subset of E(G) such
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that every component of G — E is collapsible. Let H,, H,, ..., H, denote the
components of G — E, where n, = |V(G,)| and G, is the reduction of G. Thus, G,
is obtained from G by contracting the respective subgraphs H,, H,, ..., H, to
the respective vertices x;, x,, .. ., x,, of V(Gy).

Case 1. It is easily checked that, if {x;, x;, x,} is an independent set of three
vertices in G, then

n+1=<d,(x;)+d(x;)+d(x). (34)

If G, satisfies the hypothesis of Theorem 3, then it is straightforward to reach a
conclusion of Theorem 6.

Case 2. Hence, suppose that some 3-matching M; of G, does not satisfy

S (M3)=2n, +2.
1

Let X be the set of six vertices of G, incident with M;, and define

If x(G,[X])=2, then the existence of M; implies that both color classes of
G,[X] have three members. Hence, (34) holds for both color classes of G,[X],
contrary to the condition of Case 2.

Therefore, x(G;[X]) =3, and so G;[X] must have an odd cycle. Since G; is
reduced, G,[X] has no 3-cycle, and since |X|=6, any odd cycle in G,[X] has
length 5. Since M; < E(G,[X]) and since G,[X] has a 5-cycle but no 3-cycle, we
must have

C5UK1CG1[X](_:GC, C5UK1¢G1[X], (35)

where G, appears in Fig. 1. Denote
X ={uy, uy, uz, vy, vy, U3},

where w,v,u,vsusu, is a S-cycle of Gy[X], and where N(v.)= {u;, u,} if
G,[X] = G. and N(v,) = {u,} otherwise. Define

m = max(d,(u3), d,(vs)) (36)
and
Y =Y — (N(u;) UN(u,)).

First, suppose
IY'|<m—¢, (37)

where
_{1 if GI[X]=GC;
2 if GX]#G..
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By the definition of Y’, by n, =|Y| + 6, and by (37), we have
di(uy) + di(u) = Y 0 (N(uy)) UN@u)) + (IX Nyl + 11X N N(uy)l)
=(YI=1Y'D+(T-7)
=Zn,+1-m. (38)
Since {v,, v,, v3} and {v;, v,, us} are independent vertex sets in Gy, (34) gives
d,(v,) +di(v,) +d,(v3) = n, + 1 (39)
di(v,) +d(vy) +di(us) =n, + 1. (40)
By (36), (38) holds for some m € {d(us), d(v;)}, and so (38) and one of (39) or
(40) can be added to give
; (M3)=2n, +2,
contrary to the condition of Case 2. Hence, (37) is false.
Since (37) is false,
lY'l=zm+1-¢ (41)
and (36) gives
m=d(us); m=d(vs).
Since u, and v, are each adjacent in G, to two vertices of X, this implies
m-2=|Nu;)NY'[; m-—2=|N(u;)NY'|. (42)
By (41) and r € {1, 2},
Yzm+1—t>m -2,
and so by (42) there are vertices
use Y — N(us), v, €Y' — N(v,), (43)
and if ¢ = 1, then such vertices u, and v, can be chosen to be distinct. If possible,
choose u, and v, satisfying (43) to be distinct.
2A. Suppose u, and v, are distinct. Define
S ={uy, u,, us, Uy, Vs, Vy}.

By (43) and the definition of Y', {u,, vy, vs} and {u,, us, us} are two
independent vertex sets in G,, and so by (34),

di(u;) +di(v3) +di(vy) =n; +1
d,(uy) +dy(u3) +d(ug)=n, + 1.

Hence, the number of incidences of edges of G, with vertices of § is at least
2n, + 2. We distinguish two subcases:
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—u, (or vs) is adjacent to neither of the vertices v, and v,. Then
|E(G\[{12, 43, s, V1, V2, v3}])| =5 and application of (34) to {u,, us, us} and
{vy, V2, v,) gives the desired contradiction.

_Both u, and v, are adjacent to a vertex in {v;, v,}. Since G, is Ki-free,
both u, and v, have exactly one neighbour in {v,, v,}. Suppose, e.g. usv, €
E(G)) and v4v2€E(G,)). (The remaining case is similar). Then u,v, ¢ E(G)),
for otherwise Gi[{uy, us, us, s, vy, v, v, v4}] would be collapsible. Now

|E(Gil{u1, 3, V15 V2, U3, vq}])| =5 and (34) can be applied to {us, v, v} and
{uy, vs, v,} to obtain a contradiction.

2B. Suppose Us = Us. By t€ {1, 2} and by the choice of u, and v, we have
¢t =2, and s0 G,[X]# G, and v,u, ¢ E(G,). Define

S ={uy, Uz, Us, Uy, Uy, Us}.

By (43) and the definition of Y’, {u,, v,, vs} and {u,, us, u,} are independent
sets, and soO (34) gives

di(uy) +dy(v2) + dy(v3) =n, +1,
di(uz) + di(us) +di(us) =n, +1,
and so there are at least 2n, + 2 incidences of edges of G, with vertices of S. By
(43) and the definition of Y, at most five edges incident with S have been
counted twice: UUs, UpUs, Uils, UzV3, and possibly vyu,. Thus,
|[E(G)|=2n,+2-5=2n, -3,
and so by Lemma 2, G, € {K,, K}, a contradiction. This completes Case 2, and
Theorem 6 is proved. [J

Let G be a connected graph of order n obtained from K, _; by adding a path P
of length 4, such that the ends of P, but not the internal vertices of P, are in the
K,_,. For any independent set {u, v, w} = V(G),

d(u)+dv)+d(w)=n,

and none of the conclusions of Theorem 6 holds. Hence, (33) is best-possible in
Theorem 6. The graphs K,, and G, (see Fig. 1) also show that (33) is

best-possible.

Corollary 3 (Benhocine, Clark, Kohler, and Veldman [3]). Let G be a 2-edge-
Connected simple graph of order n. If

d(u) +d(v)=3(2n + 3) (44)

Whenever uv ¢ E(G), then G has a spanning eulerian subgraph.
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Proof. Since (44) implies (33), and since a collapsible graph has a spanning
eulerian subgraph, Corollary 3 follows directly from Theorem 6. [l

As Benhocine, Clark, Koéhler, and Veldman state, Corollary 3 implies a result
of Lesniak-Foster and Williamson (the case p =2 of Theorem 9).
A result of Veldman ([14], Theorem 3) is analogous to Theorem 6:

Theorem 7 (Veldman [14]). Let G be a connected simple graph of order n. If
d(u)+dv)+dw)=n—-1
for every independent set {u, v, w} < V(G), then G has a spanning trail possibly
open).
Define, for any edge xy € E(G),
d(xy) =IN(x) UN(y)! . (45)

Corollary 4. Let G be a simple graph of order n. If
d(e,) +d(e;) + d(es) =2n +2 | (46)

for every matching {ey, €2, e3t = E (G), then G satisfies a conclusion of Theorem
3.

Proof. Write ¢, = x,y;, for 1<i=<3. By (45),
d(e;) <d(x;)+d(y), (47)
and so if Ms = {e,, e,, e3}, then (47) and (46) give

Z (M5) = i d(e;) = 2n +2,

and so either (e) of Theorem 3 holds, or the hypothesis of Theorem 4 holds. It 1s
easy to show that (b) of Theorem 4 and (46) together imply (b) of Theorem 3.
The corollary follows. [

Examples showing that Theorem 3 is best possible also show that (46) is
best-possible.

Veldman [13, 14] has used hypotheses somewhat similar to (46) as sufficient
conditions for G to have a cycle or trail that contains a vertex of every edge of G.
(His definition of d(xy) is slightly different than (45).) We shall state the result of
his that is most analogous to Corollary 4. Two edges uv and wx are remote if the
distance in G between {x, w} and {u, v} is at least 2.

Theorem 8 (Veldman [13], Corollary 3.2). Let G be a simple 2-connected graph



Spanning Eulerian subgraphs and matchings 115

of order n. If
d(e))+d(e;) +d(e;)=n+5 (48)

for every three mutually remote edges e, e,, e, then G has a cycle that passes
through at least one end of each edge of G.

We have obtained the following generalization of Corollary 3, to appear
separately [9]:

Theorem 9. Let G be a simple connected graph of order n, and let p =2 be an
integer. If

d(u)+d(v)>2;n—2, (49)

whenever uv ¢ E(G), and if n is sufficiently large compared to p, then exactly one
of the following holds:
(a) G has a spanning eulerian subgraph;
(b) G is contractible to a graph G, of order less than p, such that G, has no
spanning eulerian subgraph;
(c) p=2, and G —x =K, _, for some x € V(G) with d(x) = 1.

The case p =2 of Theorem 9 is a theorem of Lesniak-Foster and Williamson
[11]. The case p =3 is similar to Corollary 3. The case p =5 was conjectured by
Benhocine, Clark, Kéhler, and Veldman [3]. In [8], we proved an analogous
result with the hypothesis 6(G)=%n —1 in place of (49), thereby proving a
conjecture of Bauer [1, 2]. The inequality (49) is best-possible.
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