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We consider those edge-minimal graphs having no homomorphism into the five-
cycle. We characterize constructively such graphs having the additional property
that they contain no topological K, as a subgraph.  © 1988 Academic Press, Inc.

1. INTRODUCTION

For simple graphs G and H, we consider the graph homomorphism
0:G-H, | (1)

where 6§ maps V(G) into V(H) and where xye E(G) implies
6(x) 6(y)e E(H). When H is a complete graph, the homomorphism 6 is the
usual coloring, and the chromatic number and achromatic number are
special cases. (These numbers and homomorphisms are related by the
Homomorphism Interpolation Theorem [7]. For a bound, see [3].)

When the homomorphism (1) exists, we shall call § an H-coloring of G.
If G has an H-coloring, then we call G H-colorable. If G has no H-coloring,
but for all ee E(G), G—e has an H-coloring, we say that G is H-critical.
For example, a graph is K,_,-critical in this sense if and only if it is
chromatically n-critical in the usual sense (of [2], for example).

A graph F is uniquely H-colorable if for any H-colorings 6, and 6, of F
there is an automorphism ¢ of H such that 6, =0,.

ProrosiTiON 1. If G is H-critical, then G cannot »beA separated by a
uniquely H-colorable subgraph F.

The proof is an imitation of the proof for the case H=K,, ie., for
chromatically critical graphs. We omit the details.
An (x, y)-arc A(x,y) of G is a maximal path in G whose ends are
x, y€ V(G) and whose interval vertices are divalent in G. Either x and y
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are not divalent, or x =y and the component of G containing x is a cycle.
An (x, y)-arc A(x, y) having n edges will be denoted A4,(x, y). If A,(x,y) is
an arc of G, then G— A,(x, y) will denote the subgraph of G obtained
by removing all edges and internal vertices of 4,(x, ).

PROPOSITION 2. If G is C, . -critical, then no arc of G has more than
2k — 1 edges.

Since the proof is routine, we omit it. We shall refer to both propositions
in the next section.

We define an odd-TK, to be a TK, which, when embedded in the plane,
has all four faces of odd girth. An odd-K? is defined to be any graph
consisting of three edge-disjoint odd cycles C, C’, C”, and three arcs

A(u, v’y (ueV(C), u' e V(C')),
A, v") @eV(C), v'eV(C")),
Aw”, w) (weV(C"), weV(C)),

whose internal vertices have degree 2. (The graph R of Fig. 1 is an example
of an odd-K? in which all three arcs have length 0.)

Dirac [5] proved that if a graph has no Cs-coloring, then it has a TK,.
We [4] showed that the TK, in the conclusion of Dirac’s theorem could be
chosen to be an odd-TK,. Gerards [6], in strengthening a result of [1],
proved the following result:

THEOREM 1. Let G be a graph with odd girth 2k + 1. Either G has a
Cap 4 1-coloring, or G contains an odd-TK, or an 0dd-K3.

In this paper, we shall characterize constructively the graphs with no
Cs-coloring and no TK, subgraph. :

2. THE MAIN RESULTS

The branch graph B(G) of a graph G (G not a cycle) is the multigraph
obtained from G by replacing every arc by an edge joining its ends. A
graph is nodally 3-connected if its branch graph is 3-connected (this is
equivalent to Tutte’s definition [8]). For an induced subgraph H of G, the
vertices of attachment of H in G are those vertices of H incident with at
least one edge of E(G)— E(H).

We use d(u, v) to denote the distance in Cs between u, ve V(Cs).

For x, ye V(H), define

D(x, y, H)= {d(6(x), 6(y))| 0 is a Cs-coloring of H}.
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FIGURE 1

Of course, 0 runs over all Cs-colorings of H. Thus,
D(x,y, H)= {0, 1,2}.

Given two copies C, C’ of Cs, with distinguished vertices x, ze€ V(C) at
distance 2 in C, and with distinguished vertices y, z’ € V(C’) at distance 2
in C’, we denote by R,, the nine-vertex graph obtained from Cu C’ by
identifying z =z'. See Fig. 1.

We shall denote by H+ A4,(x, y) the graph obtained by adding to H an
(x, y)-arc A,(x, y) having n edges, where x, ye V(H). Denote (see Figs. 1

and 2)
R'(x,y)=R,, + As(x, y),
R”(x: y) = ny + A3(x’ y)’
R=R'(x,y)+ As(x, y),
and

RO(X’ U)=ny+A5(y’ y), ve V(As(y, y))’ d(U, y)=2

Thus, Ry(x,v) consists of three blocks, each a 5-cycle, and x, y, v are
distinguished vertices, with y as a cutvertex. '

An incremental subgraph H of a graph G is an induced subgraph H either
isomorphic to R'(x, y) or R"(x, y) and with vertices of attachment {x, y}
in G, or isomorphic to Ry(x, v), with vertices of attachment {x,v} in G,
where ve V(A4s(y, y)) S V(Ro(x, v)) is at distance 2 from y.

THEOREM 2. If G is a Cs-critical graph with no TK, subgraph, and if G is
neither K; nor R, then G contains two edge-disjoint incremental subgraphs.

R’(z, y) R"(I, y) RO(I, v) v
v v <\
8> @ |

FiG. 2. The incremental subgraphs.
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Proof. Throughout this proof, G will denote a Cs-critical graph, neither
K; nor R, and without a TK,.

Suppose that G is nodally 3-connected. Then the underlying branch
graph B(G) is 3-connected. Therefore, there are vertices x, y of degree at
least 3 in G, and there are three internally disjoint (x, y)-paths P,, P,, P,
in G, by Menger’s theorem. Also, B(G)— {x, y} is connected, and hence
some path P, in G joins internal vertices of two of P, P,, P;. Then
P,uP,uP;UP,is a TK, subgraph of G.

Hence, by Proposition 1, we can assume that G has connectivity and
nodal connectivity 2. We shall also suppose inductively, for the remainder
of the proof, that for any Cs-critical graph G'¢{K;, R}, with
| V(G')| < | V(G)|, where G' has no TK,, there are two edge-disjoint
incremental subgraphs in G'. As a basis for induction, note that if
| V(G)| <5, then the induction hypothesis holds vacuously. |

We shall prove some lemmas next. In these lemmas, unions and intersec-
tions are defined as in [2].

LemMA 1. If G,, is a 2-connected subgraph of G with vertices of
attachment {x,y} in G, where G, #K,, then G,, can be decomposed into
connected subgraphs H, H' such that

HUH =G,, HnH ={x,y}.

Proof. Since G,, is 2-connected with vertices of attachment {x,y}in G,
there are internally disjoint (x, y)-paths P, P' in G,,. Since G is 2-connec-
ted, G— E(G,,) has an (x, y)-path P,. If a path P" in G,,-{x, y} joins an
internal vertex of P to an internal vertex of P’, then P,UPUP UP" is a
TK, in G, contrary to the hypothesis of the theorem. Hence, no such path
P” exists, and so {x, y} separates G,,, and subgraphs H and H’ exist as
described, where P< H, PP H'. |}

LEMMA 2. Arn acyclic subgraph of G with only two vertices of attachment
{u, v} in G is a (u, v)-path.

Proof. An acyclic subgraph H of G is a tree. Since G has no cutvertex
(by Proposition 1), each vertex of degree 1 in H is a vertex of attachment in
G. Since H has only two vertices of attachment (x and v) in G, H must be a

(u, v)-path. |}

LEMMA 3. There exist x, y € V(G) and connected subgraphs H, and H,
of G, such that

G=H1UH2, {x,y}=H1ﬂH2, (2)
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and such that
H, and H, each contain at least one cycle. (3)

Proof. Since the nodal connectivity of G is 2, and since G is not a cycle,
the underlying branch graph B(G) has a separating set {x, y}. Therefore,
connected subgraphs H, and H,, satisfying (2), exist, where H, and H,
both have vertices of degree at least 3 and different from x and y. If H; has
no cycle, then by Lemma 2, H, is an (x, y)-path, a contradiction. Therefore,
H, and H, each contain a cycle. |}

Since G is Cs-critical, some graph H; (ie {1,2}) of Lemma 3 satisfies
| D(x, y, H;)| =1, and so we lose no generality in assuming that

!D(x’y,H1)|=1 (4)
and
H, is maximal with respect to (2), (3), and (4). (5)

Any ordered pair (H,, H,) of induced subgraphs of G satisfying (5) (and
hence (2), (3), and (4)) for some separating set {x,y} will be called a
proper pair of subgraphs of G.

Clearly, for ie {1, 2}, since G is 2-connected,

All cutvertices of H, lie on a single (x, y)-path. (6)

Let H, be a 2-connected induced subgraph of G with vertices of
attachment {u, v} in G. If

D(ua v, H0)= {O}a

then H, is called a zero-block.

Lemma 4. If (H,, H,) is a proper pair, then H, has no zero-block.

Proof. Suppose that H,, is a zero-block of H,. By the definition of a
zero-block,

D(u, v, H,,) = {0}. (7)
By Lemma 1, H,, has subgraphs H, H' such that
H,=HUH, {u, v}=HnNH.
Since G is Cs-critical, (7) implies

D(u,v,G—(H,—{u,v})) <= {1,2},
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and the values of D(u, v, G— (H— {u,v})) and D(w, v, G— (H' — {u, v}))
are {1} and {2} in some order. Hence, H or H’ could have been chosen
in place of H, in (2) and (3), unless both H and H' are acyclic. This
contradicts the maximality of H, in (4) and (5), except when both H and
H' are acyclic. In the latter case, by Lemma 2, they are (u, v)-paths, and
thus H,, is a cycle. But then (7) is false, a contradiction. |

Lemma 5. If (H,, H,) is a proper pair, then H, has a cutvertex.

Proof. Suppose, by way of contradiction, that H, is 2-connected. By
(3), H,# K,. By Lemma 1, there are subgraphs H, H' of H,, such that

H,=HUH, {x,y}=HnH.

Since G is Cs-critical and D(x, y, H,) is a singleton (by (4)), we have
identical singletons

D(x,y, HHUH)=D(x,y, H /U H').

But this implies that G has a Cs-coloring, a contradlctlon Therefore, H,
has at least one cutvertex. |

LEMMA 6 If (H,H,) is a proper pair, then H,=R,, and
D(x,y, Hy)={2}.

Proof. Let H, (resp., H,) be the block of H, containing x (resp., y). By
Lemma5, H,#H, Let {x,x'} (resp, {y »'}) be the vertices of
attachment of H, (resp., of H,) in G.

If

|D(x, x', H,) = | D(3, ¥'s H,)| =2,

then G has a Cs-coloring, a contradiction. Hence, there is no loss of
generality in our supposing that

D(x, x', H,)={t}, (8)

and Lemma 4 implies t€ {1,2}. By (4), | D(x, y, H,)| =1.
Case 1. Suppose D(x,y, Hl)—{O} Define Hy=H,u H,, and note
that (8) implies
D(x,y, H U H,)={t}.

By the maximality of H, in (5), the induced subgraph Hy=H,— (H,—x')
is acyclic with vertices of attachment {x’, y}, and so by Lemma 2, H; is an
(x',y)-path P. Let yzeE(P) be the edge incident with y. Then
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D(x, z, Hyu yz)= {1}, and the graph induced by H, u yz contradicts the
maximality of H, in (5). '

Case 2. Suppose D(x,y, H) is {1} or {2}. By (6), the blocks of H,
and the blocks of H, are arranged in cyclic order in G. By Lemma 4 and
the condition of Case 2, if H, has two or more cutvertices (and hence at
least three blocks), then G has a Cs-coloring. Hence, H, has a unique
cutvertex z=x"=y".

Since G has no Cs-coloring, there is no triple a,, a,, a, € {1, 2} with

a,eD(x,y,H,), a,eD(x,z,H,), a,eD(yzH)
such that for some choice of plus and minus signs, chosen independently,
a;ta,+a,=0(mod>5). 9)

The absence of zero-blocks implies 0 ¢ {a,, a,, a,}. If any of D(x, y, H,),
D(x,z, H,), D(y,z, H,)) has more than one member, then (9) has a
solution, a contradiction. If all three sets have exactly one member, then
since (9) has no solution, all are {1} or all are {2}.

Suppose that for some ke {1, 2}, we have k=a,, k=a,, k=a,. Then

D(x,z, H U H,)={0,3—k}. (10)

By Lemma 1, the block H, can be decomposed into connected subgraphs
H, H', where

H =HUH, {x,z}=HnH.

Since G is Cs-critical, it follows from (10) that D(x, z, H, v H,u H) and
D(x,z, HHuH,u H') are {0} and {3 —k} in some order.

If H' contains a cycle, then H, U H, U H would violate the maximality of
H, in (5), since H' could replace H, in (3). Therefore, H' is acyclic.
Likewise, H is acyclic. By Lemma 2, both H and H' are (x, z)-paths. Since
G is Cs-critical, the lengths of H and H' are less than four, by
Proposition 2, and they are unequal. By Proposition 1, x and z are not
adjacent. Hence, one of H, H' has length 2 and the other has length 3, and
so H, is a 5-cycle, and k=2.

A similar argument shows that H, is a 5-cycle, with (y, z)-arcs of lengths
2 and 3. Therefore, H;=H,UH,=R,,, and D(x,y, H,) must be {2}.
Lemma 6 is proved. |

LemMma 7. If (H,, H,) is a proper pair of subgraphs of G, and if H, is
2-connected, then either Theorem 2 holds for G or there are subgraphs H, H’
of H, such that

H =HOUH {x,y}=HNH, H=A,(x, y),

where {x, y} is the set of vertices of attachment of H, of H', and H, in G.
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Proof. By Lemma 1, since H, is 2-connected, there are subgraphs H, H’
such that

H =HUH, {x,y}=HnH.

Since G is Cs-critical, the three sets D(x, y, H,), D(x, y, H), and D(x, y, H')
are distinct subsets of {0, 1,2} such that none of the three sets contains
another one of the three sets. By Lemma 6,

D(x, y, H,)= {0, 1},
and so we lose no generality in supposing
D(x,y, H)={0,2}, D(x,y, H)={1,2}.

Therefore, H+ A,(x, y) is Cs-critical and has no TK,, and by the induction
hypothesis, either H+ A4,(x, y) = K5, whence H= A,(x, y), as required by
Lemma 7, or H contains an incremental subgraph F of G. It remains to
exclude the latter case.

Suppose that H has an incremental subgraph F. Let G’ denote the graph
obtained from G upon the replacement of H by A,(x,y). Since G is
Cs-critical and D(x,y, H)=D(x,y, A5(x,y)), the smaller graph G’
is Cs-critical. By the induction hypothesis, G’ has two edge-disjoint incre-
mental subgraphs, or G'=R. In the former case, G' — (4,(x, y) —x—y)
has an incremental subgraph F', and so F and F' are two edge-disjoint
incremental subgraphs of G. In the latter case, since G’ includes both
H,=R,, (by Lemma 6) and A4,(x, y), we must have H' = 4,(x, y). Hence,
H' v H,=R"(x, y) is an incremental subraph F' of G that is edge-disjoint

from F. Thus, if A has an incremental subgraph F, then the theorem
holds. |}

LemMma 8. If H, is a zero-block of G, with
| V(Ho) < V(G)| -3,

then H, contains an incremental subgraph.

Proof. Let u, ve V(H,) be the vertices of attachment of H,. Since H,
is a zero-block and G is Cs-critical with no TK,, H,+ A;(u, v) is also
Cs-critical with no TK,. Since |V(H,)| <|V(G)| —3, the induction
hypothesis applies to H, + A5(u, v), and so H, contains an incremental
subgraph. || '

Proof of Theorem 2 (continued). By (5), there is a proper pair (H,, H,)
of incremental subgraphs of G, and by Lemma 6,

G=H1UH2, {x,y}=H1('\H2,
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and H,=R,, is a pair of 5-cycles with exactly one vertex z in common,
where xz, yz ¢ E(G).

Case 1. Suppose that H, is 2-connected. By Lemma 7, there are
subgraphs H, H' of H, such that

H=HUH, {x,y}=HnH, H=A,(x, y).

Let ¢ be the number of cutvertices of H’, and denote x=2z,, y=z,,,. By
(6), we can let z,, z,, .., z, denote the ¢ cutvertices of H' as they occur
along an (x, y)-path in H'.
Since H = A,(x, y) and since H,=R
incremental subgraph R'(x, y) in G.
We denote by B,, By, ..., B, the t + 1 blocks of H’, where

the subgraph F=HuU H, is an

xys

Zuzia€V(B)  (0<i<i).

If H' is acyclic, then by Lemma 2, H' is an (x, y)-path and since G is
Cs-critical and D(x, y, Hu H,)= {0}, we must have H' =A;(x, y) and
hence G = R, contrary to our assumption. Therefore, H' contains a cycle,
and since D(x, y, Hu H,)= {0}, we have a proper pair (H,, H,) satisfying

HUH2§H3, H4.gH,, H3UH4=G, H3ﬂH4={Zj,Zk},
for some j and k with j<k. By Lemma 6,

H,=B,UB; =R, for u=z,v=z,,=2z,

and D(u, v, H;) = {2}. Therefore, t>2, and B, is a 5-cycle for some i such
that 1 <i<t—1, and so the proper pair (H;, H,) may be chosen so that
either

HUH,uBy& H, or HUH,uUB,cH,,

without violating the requirement (3) that H, contain a cycle. If for some 4
(0<h<1t), B, is a zero-block, then by Lemma 8 and the existence of F, G
has two edge-disjoint incremental subgraphs. Hence, we may assume that
no B, is a zero-block. Consequentlyy, H,=HuH,uB, and
H,=HUH,uUB, are two possible values of H, satisfying (5). By
Lemma 6, H,=R,,, where {u, v} is {zq,2z,} or {z,_,,2,,,}, and =2,
since G is Cs-critical. Hence, H' = Ry(x, y) and F are two incremental sub-
graphs of G.

Case 2. Suppose that H, is not 2-connected. Thus, H, has at least
one cutvertex v¢ {x, y}. By (6), all cutvertices of H, must liec on a single
(x, y)-path in H,.
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If H, has at least two zero-blocks, then by Lemmag8, G has two
incremental subgraphs. Hence, we can assume that H,; has at most one
zero-block. By (4), at most one block of H, is not a zero-block. It follows
that H, has just a single cutvertex v, and so we shall denote by H,, and H,,
the two blocks of H,, where v and x are the two vertices of attachment of
H, in G, and v and y are the two vertices of attachment of H,, in G.
Without loss of generality,

D(v, y, H,,)= {0}, (11)

and so by Lemma 6 and (11),
D(v,x, H,,)=D(x,y,H,,VH,)=D(x,y, H )= {2}.

By Lemma 8 and (11), H,, has an incremental subgraph F;.

Denote by H, the graph obtained from H,, by adding R,, and identify-
ing both vertices named v and identifying both named x. Note that H is
C-critical and Hs has no TK, subgraph. Also, Hs # Kj.

If Hi=R, then H,.=Cs, and so F,=H, UH,=Ry(v,y) is an
incremental subgraph of G. Then F,; and F, are incremental subgraphs.

Suppose, instead, that H# R. By the induction hypothesis, Hs has two
edge-disjoint incremental subgraphs, say F; and F,. If either one, say Fj, is
contained in H,,, then F, and F; are two edge-disjoint incremental sub-
graphs of G. If neither F; nor F, is contained in H,,, then F; and F, are
R,-type incremental subgraphs of Hs, but since H,, is one block, this is a
contradiction.

Therefore, G has two incremental subgraphs, and the induction is
complete. Theorem 2 is proved. |

TueEOREM 3. The graph G is Cs-critical and has no TK, if and only if G
is obtained from K, by repeated applications of the following three
operations:

1. The replacement of an arc A;(x,v) by Ro(x, v) (where x,v of the
graph are identified with the corresponding distinguished vertices x, v of
Ry(x, v)).

2. The replacement of an edge xy by R"(x, y).

3. The replacement of vertex u by nonadjacent vertices x, y, the joining
of every neighbor of u to exactly one of x, y, and the addition of R'(x,y)
such that no TK, subgraph is created.

In operations 2 and 3, the distinguished vertices x, y of R"(x, y) or R'(x,y)
are identified with the corresponding vertices with the same label in the
graph.
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ExaMPLE. The graph R can be obtained from K, by a single application
of any one of these three operations. See Fig. 1 and 2.

Proof of Theorem 3. By Theorem 2, if G is Cs-critical and has no TK,
subgraph, then G has an incremental subgraph R,(x,v), R'(x,y), or
R"(x,y). By reversing one of the operations of Theorem 3 on this
incremental subgraph, we obtain another TK,-free Cs-critical graph G’
with 9 fewer vertices and 12 fewer edges. By Theorem 2, G can be thus
reduced to R and K, and so inductively we have

IV(G)|=3  (mod9) (12)
and

J1E(G)|+3=4|V(G)|. (13)

Conversely, let G’ be a Cs-critical graph with no TK, subgraph. Then G’
satisfies (12) and (13). Moreover, one can prove inductively that
D(x, y, G’ —xy)= {0, 2} for all edges xy of G'. Let G be a graph obtained
from G’ by one of the three operations of the theorem. Clearly, G has no
TK,, and so it remains to show that G is Cs-critical.

Operation 1 replaces a subgraph A4;(x, v) satisfying

D(x, v, A5(x,v))= {1, 2}
with the subgraph Ry(x, v) having the property

D(x, v, Ro(x, v))= {1, 2},

and since G’ is Cs-critical, so is G. Operation 2 replaces the edge-subgraph
xy, satisfying

D(x, y, xy) = {1},
with the larger subgraph R"(x, y), such that
D(x, y, R"(x, y))={1}.

We claim that the graph G resulting from operation 2 is also Cs-critical. By
the above remark,

D(x, y, G'—xy)={0, 2},

and for any proper spanning subgraph H of G’ — xy, 1 € D(x, y, H), and so
GLE(H)uU E(R"(x, y))] has a Cs-coloring. Also, if ee E(R"(x, y)), then
G —e has a Cs-coloring. Thus, G is Cs-critical, as claimed.
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Let G be obtained from a C-critical graph G’ by operation 3. Let

ny=G_(Rl(x’ y)_ {x’y})

In Operation 3 we replace a vertex ue V(G’'), where D(u, u,u)={0}, by
attaching R'(x, y) to G,,, where

D(x, y, R'(x, y))= {0},

and so the resulting graph G is not Cs-colorable. If e € E(G’), then there is
a Cs-coloring of G’ —e, and it can be extended to a Cs-coloring of G —e.
Hence, E(G') is contained in a Cs-critical subgraph H of G. We must have

| V(G < | VH) < V(G)I, (14)
and

| E(G")| < | E(H)| < | E(G)I, (15)
and since (12) and (13) force equalities in (14) and (15), we have H=G.
Thus, G is Cs-critical, as claimed. |

From (12) and (13), we get:

COROLLARY. If G is Cs-critical and has no TK, subgraph, then

3|E(G)|+3=4|V(G),
and

IV(G)|=3  (mod9).

THEOREM 4. If G is obtained from R by repeated applications of the three
operations of Theorem 3, then G is R-colorable.

Proof by Induction. R is R-colorable.

Suppose that G’ has an R-coloring ', and that G is obtained from G’ by
a single application of one of the three operations of Theorem 3.

Define an R-coloring 6 of G by setting 6=0" on G — A4;5(x, z)
(operation 1), G' — xy (operation 2), or G' —u (operation 3), respectively,
depending upon which operation is used to obtain G from G'. It is easy to
verify that 6 can be extended to the incremental subgraph that is added to
G’ to form G, such that # becomes a homomorphism of G onto R. ||

Next, we show that Theorem 2 is best-possible.

THEOREM 5. There are infinitely many Cs-critical TK-free graphs with
exactly two incremental subgraphs.
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Proof. Let t=1, and let H be the graph consisting of the edge-disjoint
incremental subgraphs F,= R'(x,, y;) and F,= Ry(x,,y,), and, if >3,
then 2z — 4 isolated vertices {X,, ¥, X3, Y35« X,_1, Y;_1 }. Thus, F;n F,=
{x,,y,}ift=1, and F, and F, are disjoint if > 2. Define G to be the graph
obtained from H by the addition of these internally disjoint arcs:

Ay(Xie 1 ¥i01) (Iisi=1);
As(x; x4 1) (I<i<t—1);
As(x;, x4 1) (I<igt-—1);
Ax(yis Visy) (I1<igt-1)
As(Yis Yiv1) (1<ige-1).

Thus, | V(G)| =9t + 12, and the only three vertices of degree 4 in G join
5-cycles in F, U F,. Since every incremental subgraph has a vertex of degree
4, F, and F, are the only incremental subgraphs in G. Since G can be
obtained from R by repeated applictions of operationl (or 3) of
Theorem 3, G is Cs-critical and K,-free. |}
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