A Reduction Method to Find Spanning Eulerian Subgraphs

Paul A. Catlin

DEPARTMENT OF MATHEMATICS

WAYNE STATE UNIVERSITY

DETROIT, MICHIGAN 48202

ABSTRACT

We ask, When does a graph G have a subgraph Γ such that the vertices of odd degree in Γ form a specified set $S \subseteq V(G)$, such that $G - E(\Gamma)$ is connected? If such a subgraph can be found for a suitable choice of S, then this can be applied to problems such as finding a spanning eulerian subgraph of G. We provide a general method, with applications.

We shall use the notation of Bondy and Murty [6].

The arboricity a(G) of G is the minimum number of edge-disjoint forests whose union equals G. Nash-Williams [20] proved that, if G is nontrivial,

$$a(G) = \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)| - 1} \right\rceil, \tag{1}$$

where the maximum in (1) is taken over all induced nontrivial subgraphs H of G.

For a graph G with a subgraph H, the contraction G/H is the graph obtained from G by replacing H by a vertex v_H , such that the number of edges in G/H joining any $v \in V(G) - V(H)$ to v_H in G/H equals the number of edges joining v in G to H. This differs from the notation of [5], in that multiple edges can arise in contractions, and no edge of E(G) - E(H) is lost when H is contracted.

For $S \subseteq V(G)$, we define an S-subgraph in G to be a subgraph Γ such that

- (i) $G E(\Gamma)$ is connected; and
- (ii) $v \in S$ if and only if $d_{\Gamma}(v)$ is odd.

A graph G is *collapsible* if G has an S-subgraph for every even set $S \subseteq V(G)$. We regard K_1 as being collapsible. It is equivalent that a graph G is collapsible if and only if, for any even set $S' \subseteq V(G)$, G has a spanning connected subgraph G' having S' as its set of odd-degree vertices.

Journal of Graph Theory, Vol. 12, No. 1, 29–44 (1988) © 1988 by John Wiley & Sons, Inc. CCC 0364-9024/88/010029-16\$04.00 In this paper, we study the question of whether a given graph G is collapsible. Since $G - E(\Gamma)$ is eulerian if Γ is an S-subgraph, where

$$S = \{v \in V(G) \mid d(v) \text{ is odd}\},\$$

this can be applied to the study of whether G has a spanning eulerian subgraph. More important, we shall prove that, if G contains H as a subgraph and if H is collapsible, then G has a spanning eulerian subgraph if and only if G/H has a spanning eulerian subgraph. By a sequence of such contractions, starting from any graph G, we shall obtain a simple triangle-free graph G_1 , with $a(G_1) \leq 2$, such that G has a spanning eulerian subgraph if and only if G_1 has a spanning eulerian subgraph.

Let H be a subgraph of G. If there is a graph Γ with

- (i) $H \subseteq \Gamma \subseteq G$, and
- (ii) each vertex of Γ has even degree in Γ ,

then H is called *cyclable* in G.

A bond of G is a minimal edge set whose removal disconnects G.

Theorem 1 (Jaeger [16]). For any subgraph H of G, H is cyclable if and only if H contains no bond of G of odd cardinality.

Theorem 1 extends a result in [4], and the following lemma is related to some lemmas of [4]:

Lemma 1. If G has a spanning tree T, such that every component of G - E(T) has evenly many vertices in S, then G has an S-subgraph.

Proof. Suppose that, for any component H of G - E(T), $|V(H) \cap S|$ is even. Set $s = \frac{1}{2}|S|$ and let P_1, P_2, \ldots, P_s be paths in G - E(T) joining all vertices of S in pairs. Define Γ to be the subgraph of G - E(T) induced by those edges occurring in an odd number of the paths P_1, P_2, \ldots, P_s . Then Γ is an S-subgraph of G.

Lemma 2. For a graph G, define

$$S = \{ v \in V(G) \mid d(v) \text{ is odd} \}.$$

Then G has an S-subgraph if and only if G has a spanning eulerian subgraph.

Proof. For the set S defined in Lemma 2, if Γ is an S-subgraph, then $G - E(\Gamma)$ is a spanning eulerian subgraph. Conversely, if H is a spanning eulerian subgraph of G, then G - E(H) is an S-subgraph.

Consider the following conditions:

- (a) $\kappa'(G) \geq 4$;
- (b) for any $E \subseteq E(G)$, $2[\omega(G E) 1] \le |E|$;
- (c) G has two edge-disjoint spanning trees;
- (d) G is collapsible;
- (e) G has a spanning connected subgraph with no vertex of odd degree;
- (f) G has a spanning closed trail; and
- (g) L(G), the line graph of G, is hamiltonian.

The following implications hold: Theorem 2.

$$(a) \Rightarrow (b) \Longleftrightarrow (c) \Rightarrow (d) \Rightarrow (e) \Longleftrightarrow (f) \Rightarrow (g).$$

Kundu [17] observed (a) \Rightarrow (b). The equivalence of (b) and (c) is a theorem of Tutte [24] and Nash-Williams [19]. By Lemma 1, (c) \Rightarrow (d). If G is collapsible, then G has an S-subgraph when S is the set of odd degree vertices of G, and hence by Lemma 2, G has a spanning eulerian subgraph. Therefore, (d) \Rightarrow (e). (Theorem 1 gives (c) \Rightarrow (e) directly, if H is one of two edge-disjoint spanning trees.) Euler's Theorem [14] (also [6], p. 51) is the equivalence of (e) and (f). The implication (f) \Rightarrow (g) follows from a characterization of hamiltonian line graphs due to Harary and Nash-Williams [15] (see also Chartrand [11]).

Definition. Let $S \subseteq V(G)$. When a contraction of G reduces a subgraph H to a vertex v_H , we define the set $S/H \subseteq V(G/H)$ by

$$S/H = \begin{cases} S - V(H), & \text{if } |S \cap V(H)| \text{ is even;} \\ (S - V(H)) \cup \{v_H\}, & \text{if } |S \cap V(H)| \text{ is odd.} \end{cases}$$

Lemma 3. Let G be a graph, H be a subgraph of G, and $S \subseteq V(G)$. If G has an S-subgraph, then G/H has an (S/H)-subgraph.

Let Γ be a spanning S-subgraph of G. In Γ/H , the vertex ν_H has Proof. degree

$$d_{\Gamma/H}(v_H) = \left(\sum_{u \in V(H)} d_{\Gamma}(u)\right) - 2|E(\Gamma[V(H)])|.$$

Since S is the set of odd-degree vertices of Γ , $d_{\Gamma/H}(v_H)$ is even if and only if $|S \cap V(H)|$ is even. Also, $d_{\Gamma/H}(v) = d_{\Gamma}(v)$ for all $v \in V(\Gamma/H) - \{v_H\}$. It follows that Γ/H is an (S/H)-subgraph of G/H.

Theorem 3. Let G be a graph, H be a subgraph of G, and $S \subseteq V(G)$. If H is collapsible, then G has an S-subgraph if and only if G/H has an (S/H)-subgraph. **Proof.** If G has an S-subgraph, then Lemma 3 applies.

Conversely, suppose that H is a collapsible subgraph of G; let S be an even subset of V(G), and suppose that G/H has an (S/H)-subgraph Γ' . Let E' be the edges of Γ' incident in G/H with v_H . Since $E' \subseteq E(G)$, we can define S_1 to be the set of vertices of H incident in G with an odd number of edges of E'. Note that the symmetric difference

$$S_H = (S \cap V(H)) \Delta S_1$$

has even cardinality, since

$$|S \cap V(H)| \equiv d_{\Gamma}(v_H) \equiv |S_1| \pmod{2}.$$

Since H is collapsible, there is an S_H -subgraph Γ_H of H. We claim that the subgraph

$$\Gamma = G[E(\Gamma') \cup E(\Gamma_H)]$$

is an S-subgraph of G. Since $G/H - E(\Gamma')$ is connected, and since $H - E(\Gamma_H)$ is connected, we know that $G - E(\Gamma)$ is connected. For any $v \in V(G)$ V(H), we have $d_{\Gamma}(v) = d_{\Gamma'}(v)$, and so for such a vertex, $d_{\Gamma}(v)$ is odd if and only if $v \in S$. If $v \in V(H)$, then $d_{\Gamma}(v)$ is odd if and only if $v \in S$, because both of these equivalences hold:

$$d_{\Gamma_H}(v)$$
 is odd iff $v \in S_H$;
 $d_{G[E(\Gamma')]}(v)$ is odd iff $v \in S_1$.

This proves the claim and the theorem.

Corollary. Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is collapsible.

Combine Theorem 3 and the definition of a collapsible graph. Proof.

Theorem 4. Let H_1 and H_2 be subgraphs of H such that

$$H_1 \cup H_2 = H \tag{2}$$

and

$$V(H_1) \cap V(H_2) \neq \emptyset. \tag{3}$$

If H_1 and H_2 are collapsible, then so is H.

Proof. Let S be an even subset of V(H). By Theorem 3, since H_1 is collapsible, it suffices to prove that

$$H/H_1$$
 has an (S/H_1) -subgraph. (4)

By (3), we can pick $x \in V(H_1) \cap V(H_2)$. Define the even set

$$S_2 = \begin{cases} S - V(H_1), & \text{if } |S \cap V(H_1)| \text{ is even;} \\ (S - V(H_1)) \cup \{x\}, & \text{if } |S \cap V(H_1)| \text{ is odd.} \end{cases}$$

By (2) and the definition of S_2 , $S_2 \subseteq V(H_2)$. Since H_2 is collapsible, it has an S_2 -subgraph, and so Lemma 3 implies

$$H_2/(H_1 \cap H_2)$$
 has an $(S_2/(H_1 \cap H_2))$ -subgraph. (5)

However, (2) implies

$$H/H_1 = H_2/(H_1 \cap H_2),$$
 (6)

and the definition of S_2 implies

$$S/H_1 = S_2/H_1 = S_2/(H_1 \cap H_2). \tag{7}$$

Plugging (6) and (7) into (5), we get (4), and hence Theorem 4.

Corollary 1. Let G be a graph. If G contains a spanning tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.

Proof. Let H_1 be a maximum collapsible subgraph of G, and let T satisfy the hypothesis. If $G \neq H_1$, then there is an edge $e \in E(T)$ with exactly one end in $V(H_1)$. By the hypothesis about T, e lies in a collapsible subgraph H_2 . By Theorem 4, the subgraph $H = H_1 \cup H_2$ is collapsible, contrary to the maximality of H_1 . Hence, $G = H_1$, and so G is collapsible.

Suppose that each edge of some spanning tree of G lies in a K_3 . Since K_3 is collapsible, Corollary 1 implies that G is collapsible. By $(d) \Rightarrow (e) \Rightarrow (g)$ of Theorem 2, this implies several previous results. Balakrishnan and Paulraja [1] showed that a graph G has a spanning eulerian subgraph if each edge of G lies in a triangle. Oberly and Sumner [22] had shown that the line graph of such a graph is hamiltonian, and they noted that theorems of Chartrand and Wall [12] and Nebesky [21] follow.

Corollary 1 also implies a recent result of P. Paulraja [23], which asserts that the graph G has a spanning closed trail if each edge of G lies in a simple subgraph G' of G, such that for some edge $e \in E(G')$, a spanning subgraph of G' - e is a member of the set $\{C_5, K_{2,t}\}$ for some $t \ge 1$. In particular, such a

subgraph G' contains a 3-cycle H. Since H is collapsible and since G'/H is collapsible, the Corollary of Theorem 3 asserts that G' is collapsible, and hence Corollary 1 applies.

Corollary 2. Let E'' be a minimal edge set such that every component of G - E'' is collapsible. Let E' be the edges of G that lie in no collapsible subgraph of G. Then E'' = E'.

Proof. Clearly, if $e \in E(G) - E''$ then $e \notin E'$. Hence, $E' \subseteq E''$.

By way of contradiction, suppose that there is an edge $xy \in E'' - E'$. Denote by H_x and H_y the collapsible components of G - E'' that contain x and y, respectively. Since $xy \notin E'$, xy lies in a collapsible subgraph H_{xy} . By Theorem 4, $H_x \cup H_{xy}$ is collapsible, and $(H_x \cup H_{xy}) \cup H_y$ is collapsible, and so each component of $G - (E'' - E(H_{xy}))$ is collapsible. This contradicts the minimality of E''.

Definitions. Let $E'' \subseteq E(G)$ be a minimal edge set such that each component of G - E'' is collapsible. Let H_1, H_2, \ldots, H_c denote the components of G - E''. Denote by G_1 the graph of order c obtained from G by contracting the subgraphs H_1, H_2, \ldots, H_c to distinct vertices. We refer to G_1 as the *reduction of* G, and any graph G_1 that is the reduction of some graph G is called *reduced*. We let

$$\theta:G\to G_1$$

denote the associated contraction-mapping determining G_1 . Each H_i $(1 \le i \le c)$ is a preimage under θ of a vertex v_i of G_1 .

Note that

$$E(G_1) = E'',$$

and since E'' is unique, by Corollary 2, graph G_1 is uniquely determined, and θ is uniquely determined. In the rest of this paper, G_1 and θ will have the meaning of this definition.

Lemma 4. Let H be a collapsible subgraph of G. Let E'' be a minimal subset of E(G) such that every component of G - E'' is collapsible, let E^{**} be a minimal subset of E(G/H) such that every component of $(G/H) - E^{**}$ is collapsible, and let

$$E' = \{e \in E(G) \mid e \text{ lies in no collapsible subgraph of } G\}$$

and

 $E^* = \{e \in E(G/H) | e \text{ lies in no collapsible subgraph of } G/H\}.$

Then

$$E'' = E' = E^* = E^{**}. (8)$$

35

Proof. The first and last equalities of (8) are instances of Corollary 2 of Theorem 4. It remains to prove $E' = E^*$.

Let $e \in E'$ and suppose $e \notin E^*$, by way of contradiction. By $e \notin E^*$, G/H has a collapsible subgraph, say G'/H, containing e, where G' is a subgraph of G. Since H is also collapsible, G' is a collapsible subgraph of G, by the Corollary of Theorem 3. Since $e \in E(G')$, this contradicts $e \in E'$. Therefore,

$$E' \subset E^*$$
. (9)

Let $e \in E(G) - E'$. By the definition of E' and by Theorem 4, G has a unique maximal collapsible subgraph, say H_0 , containing e. If H_0 and H are disjoint, then H_0 is a collapsible subgraph of G/H containing e, and so by the definition of E^* ,

$$e \notin E^*$$
. (10)

On the other hand, if $V(H_0) \cap V(H) \neq \emptyset$, then by Theorem 4, $H_0 \cup H$ is collapsible, and so $H \subseteq H_0$, by the maximality of H_0 . Either $e \in E(H)$ or $e \notin E(H)$. If $e \in E(H)$, then $e \notin E(G/H)$, and so (10) holds, since $E^* \subseteq E(G/H)$. If instead $e \notin E(H)$, then $e \in E(H_0/H)$, and since H_0 and H are collapsible, the Corollary of Theorem 3 asserts that H_0/H is collapsible, whence (10) holds. Since (10) holds for all $e \in E(G) - E'$, we have $E^* \subseteq E'$ and thus by (9), $E' = E^*$.

Theorem 5. The graph G_1 is reduced if and only if every collapsible subgraph of G_1 is trivial.

Proof. If every collapsible subgraph of G_1 is trivial, then G_1 is the reduction of itself, and hence G_1 is reduced.

Suppose that G_1 is reduced. Then G_1 is the reduction of some graph G, and we denote by $H_1, H_2, \ldots, H_{\omega}$ the components of G - E'', where E'' is the set defined in Lemma 4. Let E_1 denote the edges of G_1 that lie in no collapsible subgraph of G_1 . Since G_1 is obtained from G by contracting the subgraphs $H_1, H_2, \ldots, H_{\omega}$ to distinct vertices, repeated applications of (8) of Lemma 4 ensure that $E' = E_1$, where E' is defined as in Lemma 4. But $E' = E'' = E(G_1)$ also, whence $E_1 = E(G_1)$, and so no collapsible subgraph of G_1 has an edge.

Corollary. Every subgraph of a reduced graph is reduced.

Proof. Immediate.

Theorem 6. If H is a collapsible subgraph of G, then the reduction of G equals the reduction of G/H.

Proof. Let G and H satisfy the conditions of Theorem 6, and let $E'' \subseteq E(G)$ and $E^{**} \subseteq E(G/H)$ satisfy the conditions of Lemma 4. By that lemma, $E'' = E^{**}$. Since H is in a single component of $G - E'' = G - E^{**}$, the reduction of G (obtained from G by contracting each component of $G - E'' = G - E^{**}$ to a distinct vertex) equals the reduction of G/H [obtained from G/H by contracting each component of G/H [obtained from G/H].

Next, we improve (c) \Rightarrow (d) of Theorem 2. For the proof, we define, for any graph H and vertex $v \in V(H)$,

$$M(v,H) = \{w \in V(H) | H \text{ has a } (v,w)\text{-path}\}.$$

Define D(G) to be the minimum number of edges whose addition to G is necessary to create a spanning supergraph containing two edge-disjoint spanning trees.

Theorem 7. Suppose that G is one edge short of having two edge-disjoint spanning trees. Then these are equivalent:

- (i) G is collapsible
- (ii) $\kappa'(G) \geq 2$.

Proof. If G is one edge short of having two edge-disjoint spanning trees, then G is connected. Now

$$\kappa'(G) = 1 \Rightarrow G$$
 is not collapsible,

because if G has a cut-edge uv, then G has no S-subgraph when $S = \{u, v\}$.

Conversely, suppose $\kappa'(G) \geq 2$, where G is a minimal counterexample to Theorem 7. By way of contradiction, suppose that G has a nontrivial collapsible subgraph, say H. Since G is a counterexample, the reduction G_1 of G is not K_1 (i.e., G is not collapsible). Of course, D(G) = 1 implies $D(G/H) \leq 1$. If D(G/H) = 0, then G/H is collapsible, by (c) \Rightarrow (d) of Theorem 2, and so G is collapsible, by the Corollary of Theorem 3. This contradiction gives D(G/H) = 1. Also, $\kappa'(G) \geq 2$ implies $\kappa'(G/H) \geq 2$, and Theorem 6 implies that the reduction of G/H is G_1 , which is not K_1 . Thus, G/H violates the minimality of G, and so G has no nontrivial collapsible subgraph H. By Theorem 5, G is reduced.

By the hypothesis, there are two edge-disjoint spanning forests T and U, where

$$\omega(T) = 1, \omega(U) = 2.$$

Let U_1 and U_2 be the two components of U, and assume T and U are chosen to minimize $|V(U_2)|$. We shall prove $U_2 = K_1$.

By way of contradiction, we first suppose that $T[V(U_2)]$ is disconnected. Then there is an edge $e \in E(U_2)$ whose ends lie in distinct components of $T[V(U_2)]$. The unique cycle in T+e contains an edge $e' \in [V(U_1),V(U_2)]$, and so the pair

$$T' = T + e - e', \qquad U' = U - e + e'$$

are edge-disjoint spanning forests in G, with $\omega(T') = 1$ and $\omega(U') = 2$, where one of the components of U' is also a component of $U_2 - e$. Since this contradicts the minimality of $|V(U_2)|$, the graph $T[V(U_2)]$ is connected.

The connected subgraph $T[V(U_2)]$ and the subgraph U_2 are two edge-disjoint trees that span $G[V(U_2)]$. By (c) \Rightarrow (d) of Theorem 2, $G[V(U_2)]$ is collapsible, and since G is reduced, U_2 is trivial. Therefore, we can set $V(U_2) = \{u\}$.

Let V_1, V_2, \ldots, V_r denote the vertex sets of the components of T - u, where $r = d_T(u)$. All edges of G incident with u are in E(T), otherwise G would have two edge-disjoint spanning trees. Hence $r = d_T(u) = d_G(u) \ge \kappa'(G) \ge 2$. Since T is a tree, we have $|V_i \cap N(u)| = 1$ for $1 \le i \le r$, and we can denote

$$V_i \cap N(u) = \{v_i\}.$$

Define the subtrees U_3 and U_4 , where U_3 is the smallest subtree of U_1 such that $N(u) \subseteq V(U_3)$, and where U_4 is the smallest subtree of U_3 that contains every edge $vw \in E(U_3)$ satisfying

$$v \in V_i, \quad w \in V_j \quad i \neq j.$$

Choose $xy \in E(U_4)$, such that x is an endvertex of U_4 , and without loss of generality, suppose $x \in V_1$. Define U_x and U_y to be the two components of $U_1 - xy$, where $x \in V(U_x)$ and $y \in V(U_y)$. Since $x \in V_1$, $V(U_x \cap U_3) \subseteq V_1$. By the minimality of U_3 , each endvertex of U_3 is in N(u), and U_x must contain an endvertex of U_3 . Therefore,

$$v_1 \in M(x, U_3 - xy) \subseteq M(x, U_1 - xy) = V(U_x)$$

and

$$\{v_2,\ldots,v_r\}\subseteq M(y,U_3-xy)\subseteq M(y,U_1-xy)=V(U_y).$$

From the minimality of U_4 , we conclude that $y \in V_k$ for some $k \ge 2$. Hence, the unique cycle in T + xy contains the edges uv_1 and uv_k , and these two edges join u to the distinct components U_x and U_y of $U_1 - xy$. Let S be an even subset of V(G). If $u \notin S$, then $|U_1 \cap S|$ is even, and G has an S-subgraph, by Lemma 1. If $u \in S$, then exactly one of $|V(U_x) \cap S|$, $|V(U_y) \cap S|$ is odd, and so there

is a unique $i \in \{1, k\}$ such that the edge-disjoint tree and forest

$$T' = T + xy - uv_i, \qquad U' = U - xy + uv_i$$

satisfy the hypothesis of Lemma 1, that each component of U' has evenly many vertices in S. Theorem 7 thus follows from Lemma 1.

Theorem 8. Let G be a graph, and G_1 be the reduction of G. Then each of the following holds:

- (i) G_1 is simple.
- (ii) G_1 has no K_3 .
- (iii) $a(G_1) \leq 2$.
- (iv) For any subgraph H of G_1 , either $H \in \{K_1, K_2\}$, or

$$|E(H)| \le 2|V(H)| - 4$$
.

(v) Let $S \subseteq V(G)$ be an even set, and define

$$S_1 = \{x \in V(G_1) : |\theta^{-1}(x) \cap S| \text{ is odd} \}.$$

Then G has an S-subgraph iff G_1 has an S_1 -subgraph.

- (iv) G has a spanning eulerian subgraph iff G_1 has a spanning eulerian subgraph.
- (vii) L(G) is hamiltonian iff G_1 has a closed trail containing at least one vertex of each edge of G_1 and containing each vertex $x \in V(G_1)$ for which $|\theta^{-1}(x)| > 1$.

Proof. Let G_1 be the reduction of G. By Theorem 5, no nontrivial subgraph of G_1 is collapsible. Therefore, since a 2-cycle is collapsible, (i) follows; since a 3-cycle is collapsible, (ii) follows.

Suppose (iii) is false. Let G be a reduced graph with $a(G) \ge 3$. For every subgraph H of G, the Corollary of Theorem 5 asserts that H is reduced. The minimality of G thus implies that if H is a proper subgraph of G, then $a(H) \le 2$, and so by (1),

$$|E(H)| \le 2(|V(H)| - 1).$$
 (11)

By (11) and since $a(G) \ge 3$, the only subgraph of G that attains the maximum in (1) is G itself, and so

$$|E(G)| > 2(|V(G)| - 1).$$
 (12)

The minimality of G implies that G is connected, and so the inequality of (b) of Theorem 2 holds when $E = \emptyset$. Let E be a nonempty subset of E(G), and denote the components of G - E by $H_1, H_2, \ldots, H_{\omega}$, where $\omega = \omega(G - E)$.

By (12) and (11),

$$|E| = |E(G)| - \sum_{i=1}^{\omega} |E(H_i)|$$

$$> 2(|V(G)| - 1) - \sum_{i=1}^{\omega} 2(|V(H_i)| - 1)$$

$$= -2 + 2\omega = 2(\omega(G - E) - 1),$$
(13)

and so (b) of Theorem 2 holds. By (b) \Rightarrow (d), of Theorem 2, G is collapsible. Since G is thus collapsible and reduced, Theorem 5 implies that $G = K_1$, and so $a(G) \ge 3$ is contradicted. Thus, (iii) has no counterexample.

Next, we prove (iv). Suppose that H is a subgraph of G_1 satisfying

$$|E(H)| \ge 2|V(H)| - 3.$$
 (14)

Since $a(H) \le a(G_1) \le 2$, (14) implies $D(H) \le 1$. In particular, H is connected. By Theorems 2 and 7, either H is collapsible or $\kappa'(H) = 1$. If H is collapsible, then Theorem 5 implies that $H = K_1$. If $\kappa'(H) = 1$, then H has a cut-edge e, and (14) and (iii) imply that each component of H - e has two edge-disjoint spanning trees, and by Theorem 2, they are both collapsible. By Theorem 5, each component of H - e is therefore a vertex, and hence $H = K_2$. This proves (iv).

Part (v) follows from applications of Theorem 3, since G_1 is obtained from G by a sequence of contractions of disjoint collapsible subgraphs. If, in (v)

$$S = \{x \in V(G) \mid d_G(x) \text{ is odd}\},\$$

then

$$S_1 = \{x \in V(G_1) \mid d_{G_1}(x) \text{ is odd} \}.$$

Hence, (vi) follows from (v) and application of Lemma 2 to both G and G_1 .

The proof of (vii) uses the Harary and Nash-Williams Theorem [15], which says that L(G) is hamiltonian if and only if G contains an independent set $U \subseteq V(G)$ such that G - U has a spanning eulerian subgraph. By (vi), these conditions are each equivalent to the condition that G has an independent set U such that the reduction of G - U has a spanning eulerian subgraph, and this is equivalent to the latter condition of (vii).

The inequality in part (iv) is best possible, because, if $G_1 = H = K_{2,t}$, then |E(H)| = 2|V(H)| - 4, and G_1 is reduced, as we now show. If S is a nonadjacent pair of degree r vertices of $K_{2,r}$, where $r \le t$, then $K_{2,r}$ has no S-subgraph, and hence is not collapsible. Any nontrivial subgraph G_2 of G_1 is not collapsible, because either $\kappa'(G_2) \le 1$, or $G_2 = K_{2,r}(r \le t)$. By Theorem 5, G_1 is reduced.

Denote by V_4 the set of vertices of G_1 with degree less than 4.

Lemma 5. If G_1 is a nontrivial 2-edge-connected reduced graph, then $|V_4| \ge 4$. If $|V_4| = 4$, then G_1 is eulerian and G_1 has 4 vertices of degree 2.

Proof. Write $V(G_1) = \{v_1, v_2, \dots, v_c\}$, where G_1 is a 2-edge-connected nontrivial reduced graph. By (iv) of Theorem 8,

$$|E(G_1)| \le 2c - 4. \tag{15}$$

Hence,

$$\sum_{i=1}^{c} d(v_i) = 2|E(G_1)| \le 4c - 8.$$
 (16)

Since G is 2-edge-connected, $\delta(G) \ge 2$, and hence (16) implies $|V_4| \ge 4$. Furthermore, if $|V_4| = 4$, then (16) implies that $d(v_i) = 2$ if $v_i \in V_4$, and $d(v_i) = 4$ if $v_i \notin V_4$. Therefore, G_1 is eulerian.

Theorem 9. Let G be a 2-edge-connected simple graph on n vertices. Let $b \in \{4, 5\}$. If

$$\delta(G) \ge \frac{n}{b} - 1 \tag{17}$$

and if n > 4b, then exactly one of the following holds:

- (i) Equality holds in (17), and G is contractible to $K_{2,b-2}(b \in \{4,5\})$, such that the preimage of each vertex of $K_{2,b-2}$ is a collapsible subgraph of G on exactly n/b vertices;
- (ii) b = 5 and G satisfies (e) of Theorem 2; and
- (iii) b = 4 and G satisfies (d) of Theorem 2.

Proof. Let G satisfy the stated conditions. Since n > 4b, for some $k \ge 4$,

$$bk \le n < b(k+1), \tag{18}$$

where n = bk implies $k \ge 5$. By (17) and (18),

$$\delta(G) \ge \frac{n}{b} - 1 \ge k - 1, \tag{19}$$

with equality in (19) only if n = bk and $k \ge 5$.

Let G_1 be the reduction of G, and let c denote the order of G_1 . Index the vertices $v_i \in V(G_1)$ such that

$$d(v_1) \le d(v_2) \le \dots \le d(v_c), \tag{20}$$

and define the induced subgraph H_i to be the preimage of v_i $(1 \le i \le c)$ in the contraction $\theta: G \to G_1$. If G_1 is trivial, then (d) and (e) of Theorem 2 hold.

Suppose G_1 is not trivial. By (20) and Lemma 6, either

$$\{v_1, v_2, \dots, v_5\} \subseteq V_4 \tag{21}$$

or

$$\delta(v_4) = 2$$
, and G_1 is eulerian. (22)

Suppose b = 5. If (21) fails, then by (22), G_1 is eulerian. Hence, by (vi) of Theorem 8, (ii) of Theorem 9 holds, and so we may assume

If
$$b = 5$$
, then (21) holds. (23)

Case 1. Suppose

$$\delta(G) \ge k. \tag{24}$$

If $v_i \in V_4$, then (24) and $k \ge 4 > d(v_i)$ imply that some $x_i \in V(H_i)$ has $N(x_i) \subset V(H_i)$. By (24)

$$|V(H_i)| \ge d(x_i) + 1 \ge \delta(G) + 1 \ge k + 1, \quad (v_i \in V_4).$$
 (25)

If b=5, then (21) holds, by (23). Hence, for $b\in\{4,5\}$, (23) and Lemma 5 imply $\{v_1,v_2,\ldots,v_b\}\subseteq V_4$, and so $c\geq b$. Also, (25) holds for $i=1,2,\ldots,b$. Thus,

$$n = \sum_{i=1}^{c} |V(H_i)| \ge \sum_{i=1}^{b} |V(H_i)| \ge b(k+1),$$

contrary to (18).

Case 2. Suppose $\delta(G) < k$. By (19),

$$\delta(G) = k - 1. \tag{26}$$

Since (19) holds with equality, we have

$$n = bk, \qquad k \ge 5. \tag{27}$$

By (26) and $k \ge 5$, if $v_i \in V_4$, then $d(v_i) < \delta(G)$, implying that some $x_i \in V(H_i)$ has $N(x_i) \subseteq V(H_i)$, and so

$$|V(H_i)| \ge d(x_i) + 1 \ge \delta(G) + 1 = k, \quad (v_i \in V_4).$$
 (28)

For $b \in \{4, 5\}$, (28) and the fact that $\{v_1, v_2, \dots, v_b\} \subseteq V_4$ imply

$$n \ge \sum_{i=1}^{b} |V(H_i)| \ge bk. \tag{29}$$

Now, (27) forces equality in (29), and so (29) and (28) imply

$$|V(H_1)| = |V(H_2)| = \cdots = |V(H_b)| = k$$
 (30)

and

$$|V(G_1)| = b. (31)$$

If b=5 and G_1 has a spanning eulerian subgraph, then (vi) of Theorem 8 implies that G has one too, and so (ii) holds. If b=5 and if G_1 has no spanning eulerian subgraph, then $\kappa'(G_1) \ge \kappa'(G) \ge 2$ and (31) imply $G_1 = K_{2,3}$, and so (i) of Theorem 9 holds, by (30).

If b = 4, then by (31) and Lemma 6, $G_1 = K_{2,2}$. Then (i) of Theorem 9 holds, by (30).

The bound n > 4b in Theorem 9 is best possible, for $b \in \{4, 5\}$. Let G_t be the graph constructed by taking the union of K_t and the Petersen graph, and by identifying a pair of vertices, one from each component. Thus, G_t has order t + 9 and when $t \ge 4$,

$$\delta(G_t) = 3.$$

If n = 4b and t = n - 9, then G_t fails (i), (ii), and (iii) and

$$\delta(G_t) = 3 = \frac{n}{b} - 1.$$

Therefore, examples on 4b vertices ($b \in \{4, 5\}$) show that n > 4b in Theorem 9 cannot be improved.

Bauer [2] has conjectured that, if $\delta(G) > n/5 - 1$ and $n \ge 20$, then L(G) is hamiltonian. By (e) \Rightarrow (g) of Theorem 2, Theorem 9 proves this conjecture when n > 20, and Theorem 9 characterizes the extremal graphs. A slight change in the proof also proves the case n = 20 of Bauer's conjecture, where (17) is strict.

We have recently obtained this related result [10], to appear shortly:

Theorem 10. Let G be a connected simple graph of order n and let $p \ge 2$. If $n \ge 4p^2$ and if

$$d(u) + d(v) > \frac{2n}{p} - 2$$
 (32)

whenever $uv \notin E(G)$, then exactly one of the following holds:

- (a) G has a spanning eulerian subgraph;
- (b) The reduction of G is a graph G_1 of order less than p, where G_1 has no spanning eulerian subgraph;
- (c) p = 2, and $G x = K_{n-1}$ for some $x \in V(G)$ with d(x) = 1.

Lesniak-Foster and Williamson proved the case p = 2 of Theorem 10 [18]. Benhocine, Clark, Köhler, and Veldman [3] recently conjectured the case p = 5, which is related to Theorem 8, and they proved a result virtually the same as the case p = 3 of Theorem 10. The only possible values of G_1 in (b) of Theorem 10 is when p = 5 are trees. The inequality (32) is best possible.

Theorem 10 gives a sufficient condition for G to have a spanning eulerian subgraph in terms of a bound on d(u) + d(v), when $uv \notin E(G)$. By (f) \Rightarrow (g) of Theorem 2, this also gives a condition for L(G) to be hamiltonian. Sufficient conditions involving a bound on d(u) + d(v) when $uv \in E(G)$ have been considered by Brualdi and Shanny [7], Clark [13], Veldman [25], Benhocine, Clark, Köhler, and Veldman [3], and Catlin ([8], [9]).

ACKNOWLEDGMENTS

The author is very grateful to the referees for their helpful remarks.

References

- [1] R. Balakrishnan and P. Paulraja, Chordal graphs and some of their derived graphs. Preprint.
- [2] D. Bauer, A note on degree conditions for Hamiltonian cycles in line graphs. Congressus Numeratium 49 (1985) 11–18.
- [3] A. Benhocine, L. Clark, N. Köhler, and H. J. Veldman, On circuits and pancyclic line graphs. J. Graph Theory 10 (1986) 411-425.
- [4] F. T. Boesch, C. Suffel, and R. Tindell, The spanning subgraphs of Eulerian graphs. J. Graph Theory 1 (1977) 79–84.
- [5] B. Bollobás, Extremal Graph Theory. Academic Press, London (1978).
- [6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. American Elsevier, New York (1976).
- [7] R. A. Brualdi and R. F. Shanny, Hamiltonian line graphs. J. Graph Theory **5** (1981) 307–314.
- [8] P. A. Catlin, Spanning eulerian subgraphs and matchings. Preprint (1985).
- [9] P. A. Catlin, Spanning trails. J. Graph Theory 11 (1987) 161–167.
- [10] P. A. Catlin, Contractions of graphs with no spanning eulerian subgraphs. Combinatorica, to appear.
- [11] G. Chartrand, On Hamiltonian line-graphs. Trans. Am. Math. Soc. 134 (1986) 559–566.

- [12] G. Chartrand and C. Wall, On the hamiltonian index of a graph. *Studia Sci. Math. Hungar.* **8** (1973) 43–48.
- [13] L. Clark, On hamiltonian line graphs. J. Graph Theory 8 (1984) 303-307.
- [14] L. Euler, Solutio Problematis ad geometriam situs pertinentis. *Comment. Academiae Sci. I. Petropolitanae* **8** (1736) 128–140. *Opera Omnia* Series I-7 (1766), 1–10.
- [15] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs. *Can. Math. Bull.* **8** (1965) 701–709.
- [16] F. Jaeger, A note on subeulerian graphs. J. Graph Theory 3 (1979) 91-93.
- [17] S. Kundu, Bounds on the number of disjoint spanning trees. *J. Combinat. Theory B* 17 (1974) 199–203.
- [18] L. Lesniak-Foster and J. E. Williamson, On spanning and dominating circuits in graphs. *Can. Math. Bull.* **20** (1977) 215–220.
- [19] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36 (1961) 445–450.
- [20] C. St. J. A. Nash-Williams, Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39 (1964) 12.
- [21] L. Nebesky, On the line graph of the square and the square of the line graph of a connected graph. *Casopis Pest. Math.* **98** (1973) 285–287.
- [22] D. J. Oberly and D. P. Sumner, Every connected, locally connected non-trivial graph with no induced claw is hamiltonian. *J. Graph Theory* **3** (1979) 351–356.
- [23] P. Paulraja, On graphs admitting spanning eulerian subgraphs. Preprint.
- [24] W. T. Tutte, On the problem of decomposing a graph into *n* connected factors. *J. Lond. Math. Soc.* **36** (1961) 221–230.
- [25] H. J. Veldman, Existence of spanning and dominating trails and circuits. J. Graph Theory 10 (1986) 23-31.