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ABSTRACT

We ask, When does a graph G have a subgraph I such that the vertices
of odd degree in I form a specified set S C V(G), such that G- ETI)is
connected? If such a subgraph can be found for a suitable choice of S,
then this can be applied to problems such as finding a spanning eulerian
subgraph of G. We provide a general method, with applications.

{

We shall use the notation of Bondy and Murty [6].
The arboricity a(G) of G is the minimum number of edge-disjoint forests
whose union equals G. Nash-Williams [20] proved that, if G is nontrivial,

N E(H)|

where the maximum in (1) is taken over all induced nontrivial subgraphs H
of G.

For a graph G with a subgraph H, the contraction G/H is the graph obtained
from G by replacing H by a vertex vy, such that the number of edges in G/H
joining any v € V(G) — V(H) to v, in G/H equals the number of edges join-
ing v in G to H. This differs from the notation of [5], in that multiple edges can
arise in contractions, and no edge of E(G) — E(H) is lost when H is contracted.

For S C V(G), we define an S-subgraph in G to be a subgraph I" such that

(1) G — E(I') is connected; and
(i) v € S if and only if dr(v) 1s odd.

A graph G is collapsible if G has an S-subgraph for every even set § C V(G).
We regard K, as being collapsible. It is equivalent that a graph G is collapsible
if and only if, for any even set §" C V(G), G has a spanning connected sub-
graph G’ having S’ as its set of odd-degree vertices.
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In this paper, we study the question of whether a given graph G is col-
lapsible. Since G — E(I') is eulerian if I is an S-subgraph, where

S ={v € V(G)|dv) isodd},

this can be applied to the study of whether G has a spanning eulerian subgraph.
More important, we shall prove that, if G contains H as a subgraph and if H is
collapsible, then G has a spanning eulerian subgraph if and only if G/H has a
spanning eulerian subgraph. By a sequence of such contractions, starting from
any graph G, we shall obtain a simple triangle-free graph G,, with a(G,) = 2,
such that G has a spanning eulerian subgraph if and only if G, has a spanning
eulerian subgraph.
Let H be a subgraph of G. If there is a graph I with

1) HCTI CG, and
(i1) each vertex of I has even degree in I,

then H is called cyclable in G.
A bond of G is a minimal edge set whose removal disconnects G.

Theorem 1 (Jaeger [16]). For any subgraph H of G, H is cyclable if and only
if H contains no bond of G of odd cardinality.

” Theorem 1 extends a result in [4], and the following lemma is related to
some lemmas of [4]:

Lemma 1. If G has a spanning tree 7, such that every component of G — E(T)
has evenly many vertices in S, then G has an S-subgraph.

Proof. Suppose that, for any component H of G — E(T), |V(H) N S| is
even. Set s = %\S\ and let P, P,, ..., P, be paths in G — E(T) joining all ver-
tices of S in pairs. Define I to be the subgraph of G — E(T) induced by those
edges occurring in an odd number of the paths P,,P,,...,P,. Then I is an
S-subgraph of G. 1§

Lemma 2. For a graph G, define
S ={v € V(G)|dv) isodd}.
Then G has an S-subgraph if and only if G has a spanning eulerian subgraph.
Proof. For the set S defined in Lemma 2, if I' is an S-subgraph, then

G — E(I') is a spanning eulerian subgraph. Conversely, if H is a spanning
eulerian subgraph of G, then G — E(H) is an S-subgraph. 1
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Consider the following conditions:

(a) K'(G) = 4

(b) for any E C E(G), 2[w(G — E) — 1] = |E
(¢c) G has two edge-disjoint spanning trees;

(d) G is collapsible;

(e) G has a spanning connected subgraph with no vertex of odd degree;
(f) G has a spanning closed trail; and

(g) L(G), the line graph of G, 1s hamiltonian.

K

Theorem 2. The following implications hold:
(a) = (b) <> (c) > (d) > (e) & () = (g) -

Kundu [17] observed (a) = (b). The equivalence of (b) and (¢) is a theorem
of Tutte [24] and Nash-Williams [19]. By Lemma 1, (c) = (d). If G is col-
lapsible, then G has an S-subgraph when § is the set of odd degree vertices of
G, and hence by Lemma 2, G has a spanning eulerian subgraph. Therefore,
(d) = (e). (Theorem 1 gives (¢) = (e) directly, if H is one of two edge-disjoint
spanning trees.) Euler’s Theorem [14] (also [6], p. 51) is the equivalence of (e)
and (). The implication (f) = (g) follows from a characterization of hamil-
tonian line graphs due to Harary and Nash-Williams [15] (see also Chartrand [11]).

Definition. Let S C V(G). When a contraction of G reduces a subgraph H to
a vertex vy, we define the set S/H C V(G/H) by

S/H = § — Vi), if |S N V(H)] is even;
TS = VIH)) U {y}, if S N VH)| is odd.

Lemma 3. Let G be a graph, H be a subgraph of G, and § C V(G). If G has
an S-subgraph, then G/H has an (S/H )-subgraph.

Proof. Let I be a spanning S-subgraph of G. In I'/H, the vertex vy has
degree

dryy (vy) = ( > dr(u)> — 2|ETVH)DI.

ueV(H)

Since S is the set of odd-degree vertices of T, dr/y(vy) is even if and only if
IS N V(H)| is even. Also, dr/y(v) = dr(v) for all v € V([/H) — {vy}. 1t fol-
Jows that T'/H is an (S/H)-subgraph of G/H. 1

Theorem 3. Let G be a graph, H be a subgraph of G, and § C V(G). If H is
collapsible, then G has an S-subgraph if and only if G/H has an (S /H )-subgraph.
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Proof. 1f G has an S-subgraph, then Lemma 3 applies.

Conversely, suppose that H is a collapsible subgraph of G let S be an even
subset of V(G ), and suppose that G/H has an (S/H )-subgraph I'". Let E' be the
edges of I'" incident in G/H with vy. Since E' C E(G), we can define S, to be
the set of vertices of H incident in G with an odd number of edges of E'. Note
that the symmetric difference

S, = (S N V(H))AS,
has even cardinality, since
S N VH)| = dploy) = 18] (mod 2).

Since H is collapsible, there is an S, -subgraph I'y; of H. We claim that the
subgraph

I =GlET) U ET,)]
is an S-subgraph of G. Since G/H — E(I'") 1s connected, and since H — ETy)
is connected, we know that G — E() is connected. For any v e V(G) —
V(H), we have di(v) = dp(v), and so for such a vertex, dr(v) is odd if and
onlyifv €ES. IfvE V(H), then dr(v) 18 odd if and only if v € S, because

both of these equivalences hold:

dr,, (v) is odd iff v & Sy
dgipry(v) is odd iff v € S, .

This proves the claim and the theorem. §
Corollary. LetH be a collapsible subgraph of G. Then G is collapsible if and
only if G/H is collapsible.

Proof. Combine Theorem 3 and the definition of a collapsible graph. 1

Theorem 4. Let H, and H, be subgraphs of H such that
H UH,=H (2)
and
V(H,) N V(H,) # <. (3)

If H, and H, are collapsible, then so is H.
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Proof. Let § be an even subset of V(H). By Theorem 3, since H, is col-
lapsible, it suffices to prove that

H/H, has an (S/H,)-subgraph . 4)

By (3), we can pick x € V(H,) N V(H,). Define the even set
¢ - S — V(H,), if |S N V(H))| is even;
Pl = VIH)) U i}, if S N OVIH,) s odd.

By (2) and the definition of S,, S, C V(H,). Since H, is collapsible, it has an
S,-subgraph, and so Lemma 3 implies

H,/(H, N H,) has an (S,/(H, N H,))-subgraph . (5)
However, (2) implies
H/H, = H,/(H, N H,), (6)
and the definition of S, implies
S/H, = S,/JH, = S,/(H, N H,). (7)

Plugging (6) and (7) into (5), we get (4), and hence Theorem 4. |

Corollary 1. Let G be a graph. If G contains a spanning tree T such that each
edge of T 1s in a collapsible subgraph of G, then G is collapsible.

Proof. Let H, be a maximum collapsible subgraph of G, and let T satsify
the hypothesis. If G # H,, then there is an edge ¢ € E(T) with exactly one
end in V(H,). By the hypothesis about 7, e lies in a collapsible subgraph H,. By
Theorem 4, the subgraph H = H, U H, is collapsible, contrary to the maxi-
mality of H,. Hence, G = H,, and so G is collapsible. |

Suppose that each edge of some spanning tree of G lies in a K. Since K is
collapsible, Corollary 1 implies that G is collapsible. By (d) = (e) = (g) of
Theorem 2, this implies several previous results. Balakrishnan and Paulraja [1]
showed that a graph G has a spanning eulerian subgraph if each edge of G lies
in a triangle. Oberly and Sumner [22] had shown that the line graph of such a
graph is hamiltonian, and they noted that theorems of Chartrand and Wall [12]
and Nebesky [21] follow.

Corollary 1 also implies a recent result of P. Paulraja [23], which asserts that
the graph G has a spanning closed trail if each edge of G lies in a simple sub-
graph G' of G, such that for some edge ¢ € E(G'), a spanning subgraph of
G’ — e is a member of the set {C;, K, ,} for some ¢ = 1. In particular, such a
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subgraph G' contains a 3-cycle H. Since H is collapsible and since G'/H is
collapsible, the Corollary of Theorem 3 asserts that G' is collapsible, and
hence Corollary 1 applies.

Corollary 2. Let E” be a minimal edge set such that every component of
G — E" is collapsible. Let E’ be the edges of G that lie in no collapsible sub-
graph of G. Then E" = E'.

Proof. Clearly, if e € E(G) — E" then ¢ ¢ E'. Hence, E' C E".

By way of contradiction, suppose that there is an edge xy € E" — E'. Denote
by H, and H, the collapsible components of G — E" that contain x and y, re-
spectively. Since xy & E', xy lies in a collapsible subgraph H,,. By Theorem 4,
H, U H_, is collapsible, and (H, U H_.) U H, is collapsible, and so each com-
ponent of G — (E” — E(H,)) s collapsible. This contradicts the minimality
of E". 1

Definitions. Let E” C E(G) be a minimal edge set such that each component

of G — E" is collapsible. Let H,,H,, ..., H, denote the components of
G — E". Denote by G, the graph of order ¢ obtained from G by contracting the
subgraphs H,,H,, ... ,H.t0 distinct vertices. We refer to G, as the reduction of

G, and any graph G, that is the reduction of some graph G is called reduced.
We let

0:G — G,

denote the associated contraction-mapping determining G, EachH, (1 =i =0)
is a preimage under 6 of a vertex v, of G,.
Note that

E(G) = E",

and since E” is unique, by Corollary 2, graph G, is uniquely determined, and 6
is uniquely determined. In the rest of this paper, G, and 6 will have the mean-
ing of this definition.

Lemma 4. Let H be a collapsible subgraph of G. Let £ " be a minimal sub-
set of E(G) such that every component of G — E" is collapsible, let E** be a

minimal subset of E(G/H) such that every component of (G/H) — E** is col-
lapsible, and let

E' = {e € E(G)]e lies in no collapsible subgraph of G}
and

E* = {e € E(G/H)|e lies in no collapsible subgraph of G/H} .
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Then
E'"=F' = E* = E**, (8)

Proof. The first and last equalities of (8) are instances of Corollary 2 of
Theorem 4. It remains to prove £’ = E*.

Lete € E' and suppose e & E*, by way of contradiction. By e & E*, G/H
has a collapsible subgraph, say G'/H, containing e, where G ' is a subgraph of
G. Since H is also collapsible, G ' is a collapsible subgraph of G, by the Corol-
lary of Theorem 3. Since e € E(G'), this contradicts e € E'. Therefore,

E' CE*. 9)

Let ¢ € E(G) — E'. By the definition of £’ and by Theorem 4, G has a

unique maximal collapsible subgraph, say H,, containing e. If H, and H are

disjoint, then H, is a collapsible subgraph of G/H containing e, and so by the
definition of E*,

e & E*. (10)

On the other hand, if V(H,) N V(H) # J, then by Theorem 4, H, U H is col-
lapsible, and so H C H,, by the maximality of H,. Either e € E(H) or ¢ &
EH).Ife € E(H), thene & E(G/H), and so (10) holds, since E* C E(G/H).
If instead e €& E(H), then e € E(H,/H), and since H, and H are collapsible,
the Corollary of Theorem 3 asserts that H,/H is collapsible, whence (10) holds.
Since (10) holds for all ¢ € E(G) — E', we have E* C E' and thus by (9),
E'"=E* 1

Theorem 5. The graph G, is reduced if and only if every collapsible sub-
graph of G, is trivial.

Proof. 1If every collapsible subgraph of G, is trivial, then G, is the reduc-
tion of itself, and hence G, is reduced.

Suppose that G, is reduced. Then G, is the reduction of some graph G, and
we denote by H|,H,, ... ,H, the components of G — E", where E" is the set
defined in Lemma 4. Let E, denote the edges of G, that lie in no collapsible
subgraph of G,. Since G, is obtained from G by contracting the subgraphs
H,H,, ..., H, to distinct vertices, repeated applications of (8) of Lemma 4
ensure that £’ = E,, where E' is defined as in Lemma 4. But £’ = E" =
E(G)) also, whence E, = E(G,), and so no collapsible subgraph of G, has an
edge. 1

Corollary. Every subgraph of a reduced graph is reduced.

Proof. Immediate. 1
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Theorem 6. If H is a collapsible subgraph of G. then the reduction of G
equals the reduction of G/H.

Proof. LletGandH satisfy the conditions of Theorem 6, and let E" C E(G)
and E** C E(G/H) satisfy the conditions of Lemma 4. By that lemma,
E" = E**. Since H is in a single component of G — E" =G — E**, the
reduction of G (obtained from G by contracting each component of G — E” =
G — E** to a distinct vertex) equals the reduction of G/H [obtained from G /H
by contracting each component of (G/H) — E** to a distinct vertex]. 1

Next, we improve (c) = (d) of Theorem 2. For the proof, we define, for any
graph H and vertex v e V(H),

M(,H) = {w € V(H)|H has a (v, w)-path} .

Define D(G) to be the minimum number of edges whose addition to G 1s
necessary to create a spanning supergraph containing two edge-disjoint span-
ning trees.

Theorem 7. Suppose that G is one edge short of having two edge-disjoint
spanning trees. Then these are equivalent:

(i) G is collapsible
(i) k' (G) = 2.

Proof. 1f G is one edge short of having two edge-disjoint spanning trees,
then G is connected. Now

k'(G) = 1 = G is not collapsible,

because if G has a cut-edge uv, then G has no S-subgraph when § = {u, v}.

Conversely, suppose k'(G) = 2, where G is a minimal counterexample to
Theorem 7. By way of contradiction, suppose that G has a nontrivial collaps-
ible subgraph, say H. Since G is a counterexample, the reduction G, of G is not
K, (i.e., G is not collapsible). Of course, D(G) = 1 implies D(G/H) = 1.
If D(G/H) = 0, then G/H is collapsible, by (c) = (d) of Theorem 2, and
so G is collapsible, by the Corollary of Theorem 3. This contradiction gives
D(G/H) = 1. Also, k'(G) = 2 implies k' (G/H) = 2, and Theorem 6 implies
that the reduction of G/H is G,, which is not K,. Thus, G/H violates the mini-
mality of G, and so G has no nontrivial collapsible subgraph H. By Theorem 5,
G is reduced.

By the hypothesis, there are two edge-disjoint spanning forests T and U,
where

o) =1, 0(U) = 2.
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Let U, and U, be the two components of U, and assume 7 and U are chosen to
minimize |V(U,)|. We shall prove U, = K.

By way of contradiction, we first suppose that T[V(U,)] is disconnected.
Then there is an edge e € E(U,) whose ends lie in distinct components of
T{V(U,)]. The unique cycle in T + e contains an edge e’ € [V(U,), V(U,)],
and so the pair

T =T +e — €', U =U—¢e + e

are edge-disjoint spanning forests in G, with w(T"') = 1 and o(U') = 2, where
one of the components of U’ is also a component of U, — e. Since this contra-
dicts the minimality of |V(U,)|, the graph T[V(U,)] is connected.

The connected subgraph T[V(U,)] and the subgraph U, are two edge-disjoint
trees that span G [V(U,)]. By (¢) = (d) of Theorem 2, G[V(U,)] is collapsible,
and since G is reduced, U, is trivial. Therefore, we can set V(U,) = {u}.

Let V,,V,, ...,V denote the vertex sets of the components of T — u, where
r = d.(u). All edges of G incident with u are in E(T'), otherwise G would have
two edge-disjoint spanning trees. Hence r = dp(u) = dg(u) = x'(G) = 2.
Since 7 is a tree, we have |V, N N@w)| = 1for 1 =i =< r, and we can denote

- V. N N@w) = {v;}.

Define the subtrees U, and U,, where Us is the smallest subtree of U, such
that N(u) C V(U,), and where U, is the smallest subtree of U, that contains
every edge vw € E(U,) satisfying

vEYV, w eV, i #j.
Choose xy € E(U,), such that x is an endvertex of U,, and without loss of gen-
erality, suppose x € V,. Define U, and U, to be the two components of U, — xy,
where x € V(U,) and y € V(U,). Since x € V,, V(U, N U,) C V,. By the
minimality of U,, each endvertex of U, is in N(u), and U, must contain an end-
vertex of U;. Therefore,

v, € M(x, U, — xy) C M(x, U, — xy) = V(Ux)
and
{vs, ..o} T My, Uy — xy) CM(y, U, — xy) = V(U,) .

From the minimality of U,, we conclude that y € V, for some k = 2. Hence,
the unique cycle in T + xy contains the edges uv, and uv,, and these two edges
join u to the distinct components U, and U, of U, — xy. Let S be an even subset
of V(G). If u & S, then |U, N S| is even, and G has an S-subgraph, by Lemma
1. If u € S, then exactly one of |V(U,) N S|, [V(U,) N S| is odd, and so there

b
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is a unique i € {1, k} such that the edge-disjoint tree and forest
T' =T + xy — uv,, U'=U — xy + uy;

satisfy the hypothesis of Lemma 1, that each component of U has evenly
many vertices in S. Theorem 7 thus follows from Lemma 1. §

Theorem 8. Let G be a graph, and G, be the reduction of G. Then each of
the following holds:

(1) G, is simple.
(i) G, has no K;.
(i) a(G)) = 2.
(iv) For any subgraph H of G,, either H € {K,,K,}, or

(E(H)[ = 2\V(H)\ - 4.
(v) Let § C V(G) be an even set, and define
S, =4 € V(G]):\O*I(x) N S| is odd}.

Then G has an S-subgraph iff G, has an S;-subgraph.

(iv) G has a spanning eulerian subgraph iff G, has a spanning eulerian sub-
graph.

(vii) L(G) is hamiltonian iff G, has a closed trail containing at least one ver-
tex of each edge of G, and containing each vertex x € V(G)) for which
07 (x)| > 1.

Proof. Let G, be the reduction of G. By Theorem 5, no nontrivial sub-
graph of G, is collapsible. Therefore, since a 2-cycle is collapsible, (i) follows;
since a 3-cycle is collapsible, (ii) follows.

Suppose (iii) is false. Let G be a reduced graph with a(G) = 3. For every
subgraph H of G, the Corollary of Theorem 5 asserts that H is reduced.
The minimality of G thus implies that if H is a proper subgraph of G, then
a(H) = 2, and so by (1),

EH)| = 2(VH)| = 1. (11)

By (11) and since a(G) = 3, the only subgraph of G that attains the maximum
in (1) is G 1itself, and so

E(G)| > 2(V(G)] = 1. (12)
The minimality of G implies that G is connected, and so the inequality of (b)

of Theorem 2 holds when E = . Let E be a nonempty subset of E(G), and
denote the components of G — E by H,,H,,...,H,, where w = o(G — E).
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By (12) and (11),
E| = [EG)| — 2 |E@H,)]
=1

> 2V(G) = 1) = 2 2(VH,)| — 1)
= -2 4+ 2w =2(w(G —E)—1), (13)

and so (b) of Theorem 2 holds. By (b) = (d), of Theorem 2, G is collapsible.
Since G 1is thus collapsible and reduced, Theorem 5 implies that G = K, and
so a(G) = 3 is contradicted. Thus, (iii) has no counterexample.

Next, we prove (iv). Suppose that H is a subgraph of G, satisfying

E(H)| = 2[V(H)| — 3. (14)

Since a(H) = a(G,) = 2, (14) implies D(H) = 1. In particular, H is con-
nected. By Theorems 2 and 7, either H is collapsible or k'(H) = 1. If H is col-
lapsible, then Theorem 5 implies that H = K,. If k'(H) = 1, then H has a
cut-edge e, and (14) and (iii) imply that each component of H — e has two
edge-disjoint spanning trees, and by Theorem 2, they are both collapsible. By
Theorem 5, each component of H — e is therefore a vertex, and hence H = K,.
This proves (iv).

Part (v) follows from applications of Theorem 3, since G, is obtained from G
by a sequence of contractions of disjoint collapsible subgraphs. If, in (v)

S ={x € V(G)|d;(x) is odd},
then ’
S, =1{x € V(Gl)\dcl(x) is odd}.

Hence, (vi) follows from (v) and application of Lemma 2 to both G and G;.

The proof of (vii) uses the Harary and Nash-Williams Theorem [15], which
says that L(G) is hamiltonian if and only if G contains an independent set
U C V(G) such that G — U has a spanning eulerian subgraph. By (vi), these
conditions are each equivalent to the condition that G has an independent set U
such that the reduction of G — U has a spanning eulerian subgraph, and this is
equivalent to the latter condition of (vii). &

The inequality in part (iv) is best possible, because, if G, = H = K, ,, then
|E(H)| = 2|V(H)| — 4, and G, is reduced, as we now show. If S is a nonadjacent
pair of degree r vertices of K, ,, where r = ¢, then K, , has no S-subgraph, and
hence is not collapsible. Any nontrivial subgraph G, of G, is not collapsible,
because either k'(G,) = 1, or G, = K, ,(r = 1). By Theorem 5, G, is reduced.

Denote by V, the set of vertices of G, with degree less than 4.

Lemma5. If G, is a nontrivial 2-edge-connected reduced graph, then |V,| = 4.
If [V,| = 4, then G, is eulerian and G, has 4 vertices of degree 2.
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Proof. Write V(G)) = {v,,v,,...,v.}, where G, is a 2-edge-connected
nontrivial reduced graph. By (iv) of Theorem &,

E(G)| = 2¢ — 4. (15)

Hence,

¢

> d(v,) = 2|E(G))] = 4c — 8. (16)

1

Since G is 2-edge-connected, 8(G) = 2, and hence (16) implies |V,| = 4. Fur-
thermore, if |V,| = 4, then (16) implies that d(v,) = 2if v, € V,, and d (v;) = 4
if v, & V,. Therefore, G, is eulerian. 1

Theorem 9. Let G be a 2-edge-connected simple graph on n vertices. Let
b € {4,5}. 1f

83(G)=— — 1 (17)

n
b
and if n > 4b, then exactly one of the following holds:

(i) Equality holds in (17), and G is contractible to K, ,_»(b € {4,5}). such
that the preimage of each vertex of K, ,_, is a collapsible subgraph of G
on exactly n/b vertices;

(1)) b = 5 and G satisfies (e) of Theorem 2; and

(iii) & = 4 and G satisfies (d) of Theorem 2.

Proof. Let G satisfy the stated conditions. Since n > 4p, for some k = 4,
bk =n < bk + 1), (18)

where n = bk implies k = 5. By (17) and (18),
n
8(G)Z;—12k—1, (19)

with equality in (19) only if n = bk and k = 5.
Let G, be the reduction of G, and let ¢ denote the order of G,. Index the ver-
tices v; € V(G,) such that

dv)) = dlv) = - =dv,), (20)

and define the induced subgraph H., to be the preimage of v, (1 = i = ¢) in the
contraction 0:G — G,. If G, is trivial, then (d) and (e) of Theorem 2 hold.



METHOD TO FIND SPANNING EULERIAN SUBGRAPHS 41
Suppose G, is not trivial. By (20) and Lemma 6, either
{v,,v5,...,u C V, 21
or
&, = 2, and G, is eulerian. (22)

Suppose b = 5. If (21) fails, then by (22), G, is eulerian. Hence, by (vi) of
Theorem 8, (ii) of Theorem 9 holds, and so we may assume

Ifb =35, then (21) holds. (23)

Case 1. Suppose
8(G) = k. (24)

If v, € V,, then (24) and k = 4 > d(v,) imply that some x; € V(H,) has
N(x) C V(H,). By (24)
VH) zdx)+1=8G)+ 1=k +1, (v, € V). (25)

1

If b = 5, then (21) holds, by (23). Hence, for b € {4, 5}, (23) and Lemma 5
imply {v,,v,,...,v,} C V,,and so ¢ = b. Also, (25) holds fori = 1,2, ...,b.
Thus,

b

n = gIV(Hi)\ = S V)| = bk + 1),

i=1

contrary to (18).

Case 2. Suppose 6(G) < k. By (19),
8(G) =k — 1. (26)
Since (19) holds with equality, we have
n = bk, k=5. (27)

By (26) and k = 5, if v; € V,, then d(v;) < 8(G), implying that some
x; € V(H,) has N(x;,) C V(H,), and so

VH)| = dx,) + 1=8G) + 1=k, (v, EV,). (28)
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For b € {4, 5}, (28) and the fact that {v,, v, . .. ,v,; C V, imply
b
n = > |V(H) = bk. (29)
i=1

Now, (27) forces equality in (29), and so (29) and (28) imply

‘V(Hl)‘ = ‘V(Hz)‘ == |V(Hb)‘ =k (30)
and
V(G))| = b. 31)

If b = 5 and G, has a spanning eulerian subgraph, then (vi) of Theorem 8
implies that G has one too, and so (ii) holds. If » = 5 and if G, has no span-
ning eulerian subgraph, then «'(G,) = k'(G) = 2 and (31) imply G, = K, 5,
and so (i) of Theorem 9 holds, by (30).

If b = 4, then by (31) and Lemma 6, G, = K, ,. Then (1) of Theorem 9
holds, by (30). 1

The bound n > 4b in Theorem 9 is best possible, for b € {4, 5}. Let G, be
the graph constructed by taking the union of K, and the Petersen graph, and by
identifying a pair of vertices, one from each component. Thus, G, has order
t + 9 and when t = 4,

5(G,) = 3.
Ifn =4bandt = n — 9, then G, fails (i), (ii), and (iii) and

n

1.
b

5(G,) =3 =

Therefore, examples on 4b vertices (b € {4, 5}) show thatn > 4b in Theorem 9
cannot be improved.

Bauer [2] has conjectured that, if 6(G) > n/5 — 1land n = 20, then L(G) is
hamiltonian. By (¢) = (g) of Theorem 2, Theorem 9 proves this conjecture
when n > 20, and Theorem 9 characterizes the extremal graphs. A slight
change in the proof also proves the case n = 20 of Bauer’s conjecture, where
(17) 1is strict.

We have recently obtained this related result [10], to appear shortly:

Theorem 10. Let G be a connected simple graph of order n and letp = 2. If
n = 4p* and if

d(u) + dv) >g‘;n_ -2 (32)
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whenever uv & E(G), then exactly one of the following holds:

(a) G has a spanning eulerian subgraph;
(b) The reduction of G is a graph G, of order less than p, where G, has no
spanning eulerian subgraph;

(c) p=2,and G — x = K,_, for some x € V(G) withd(x) = 1. 1

n—1

Lesniak-Foster and Williamson proved the case p = 2 of Theorem 10 [18].
Benhocine, Clark, Kohler, and Veldman [3] recently conjectured the case
p = 5, which is related to Theorem 8, and they proved a result virtually the
same as the case p = 3 of Theorem 10. The only possible values of G, in (b)
of Theorem 10 is when p = 5 are trees. The inequality (32) is best possible.

Theorem 10 gives a sufficient condition for G to have a spanning eulerian
subgraph in terms of a bound on d(u) + d(v), when uv & E(G). By (f) = (g)
of Theorem 2, this also gives a condition for L(G) to be hamiltonian. Sufficient
conditions involving a bound on d(u) + d(v) when uv € E(G) have been con-
sidered by Brualdi and Shanny [7], Clark [13], Veldman [25], Benhocine,
Clark, Kohler, and Veldman [3], and Catlin ([8], [9]).
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