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Let p=2 be a fixed integer, and let G be a connected graph on n vertices. If §(G)=2, if
d(u)+d(v)=>2n/p—2 holds whenever uv§ E(G), and if n is sufficiently large compared to p, then
either G has a spanning eulerian subgraph, or G is contractible to a graph G, of order less then p
and with no spanning eulerian subgraph. The case p=2 was proved by Lesniak—Foster and Wil-
liamson. The case p=5 was conjectured by Benhocine, Clark, Kohler, and Veldman, when they
proved virtually the case p=3. The inequality is best-possible.

1. Introduction

Consider a finite graph G with vertex set ¥ (G) and edge set E(G). Let n denote
the order of G, and let G¢ denote the complement of G. Let d(v) denote the degree of v
in G, and let d, (v) denote the degree of v in G,. The edge-connectivity of G is %’ (G).
Let a(G) denote the arboricity of G : i.e., the minimum number of forests whose union
contains E(G). We regard eulerian graphs as being connected, and a spanning eulerian
subgraph of G is an eulerian subgraph containing every vertex of G.

For xy€E(G), an elementary contraction of G is the graph G/xy obtained from
G by deleting {x, y} and inserting a new vertex v and edges joining v to each
weV (G— {x, y}) with as many edges as {x, y} was joined to w by edges in G. ((Thus,
an elementary contraction can create multiple edges). A contraction of G is a graph
G/H obtained from G by a sequence of elementary contractions of edges of the sub-
graph H. :
P Lesniak—Foster and Williamson [6] proved:
Theorem 1. Let G be a graph of order n=6. If §(G)=2 and if any pair u, v of non-
adjacent vertices of G,

(1) du)+d(v) = n—1,
then G has a spanning eulerian subgraph.

Benhocine, Clark, K&hler, and Veldman [1] recently proved:
Theorem 2. Let G be a 2-edge-connected graph on n=3 vertices. If

dw)+d(v) = 5 (2n+3)

whenever uv¢ E(G), then G has a spanning eulerain subgraph.
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In this paper, we shall generalize these results, using a new method. We first
present a concept that we introduced in [2]. '

A graph G is called collapsible if for any even set SSV(G), there is a forest I
in G such that both

1) G—E(I) is connected; and

ii) § is the set of vertices of odd degree in I

We state some observations about collapsible graphs:

(2) The cycles C; and C,, are collapsible.

Note that if G is not 2-edge-connécted, orif G=C, for k=4, then G is not collaps-

ible. Also, K,,, is never collapsible, for any ¢. If t=1, then K, is collapsible, except
when =2,

(3) If H has two edge-disjoint spanning trees, then H is collapsible.

Statement (3) follows from the fact that for any even subset R of the vertices of a tree
T, there is a forest I in T such that R is the set of vertices of odd degreein I'.
What makes the concept of collapsible graphs useful in the study of spanning

eulerian subgraphs is the following proposition: Let H be a connected subgraph of G.
If H is collapsible, then these are equivalent :

i) G has a spanning eulerian subgraph;
ii) G/H has a spanning eulerian subgraph.
Also, if H is collapsible, then G is collapsible iff G/H is collapsible.

2. The main results

We prove our main result in terms of collapsible graphs, and in the corollaries
we express it in terms of spanning eulerian subgraphs.

Theorem 3. Let G be a connected simple graph of order n, and let p=2 be an integer.

Iy

@ d(u)+d(v) > 3};’_—2
whenever uvg E(G), and if

) n = 4p?,

then exactly one of the following conclusions holds:
a) G is collapsible;
b) G is contractible to a noncollapsible graph G, of arboricity a(Gy)=2 and of
order less than p;
©) p=2 and G—x=K,_, for some x¢ V(G) with d(x)=1;
d) p=4, and thereisa contraction-mapping G—~C,, such that the preimages of
some adjacent pair of vertices of Cy are adjacent singletons of degree 2 in G.

Also, in every contraction of parts b) and d), the preimage of any vertex of G, is an
induced collapsible subgraph of G.

First, we state some consequences of Theorem 3. We regard K; as having a
spanning eulerian subgraph.
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Corollary 1. Let G be a connected simple graph of order n, and let p=2 be an integer.

If

6) d(u)+d(v) > _2}.7’1—2
whenever uv¢ E(G), and if
(7 n = 4p,

then exactly one of the following conclusions holds:
a) G has a spanning eulerian subgraph;
b) G is contractible to a graph G, of order less than p and containing no spanning
eulerain subgraph,
¢) p=2, and G—x=K,_; for some x€V(G) with d(x)=1.

Corollary 2. Let G be a 2-edge-connected simple graph of order n. If n=100 and if

@®) () +d(o) > 35£-2

whenever uv¢ E(G), then L(G), the line graph of G, is hamiltonian, and G has a span-
ning eulerian subgraph.

Corollary 2 (which is the case p=5 of Corollary 1) is a conjecture of Ben-
hocine, Clark, K&hler, and Veldman [1]. The case p=2 of Corollary 1 is Theorem 1
(except for the bound on n), due to Lesniak—Foster and Williamson [6]. The case
p=3 of Corollary 1 is related to Theorem 2, which is a result of Benhocine, Clark,
Kohler, and Veldman [1]. In Theorem 7 of [2], we proved a result related to the cases
p=4 of Theorem 3 and p=5 of Corollary 1.

Proof of Corollary 1. Clearly, a) of Theorem 3 implies a) of Corollary 1. The same is
true of ¢). Suppose, in b) and d) of Theorem 3, that the image G, of the contraction-
mapping GG, has a spanning eulerian subgraph. Since the preimage of each vertex
of G, is collapsible, it follows easily from the definition of collapsible graphs that G
has a spanning eulerian subgraph. If, in b) of Theorem 1, the contraction G, has no
spanning .eulerian subgraph, then neither does G. ||

Proof of Corollary 2. Set p=5 in Corollary 1. Harary and Nash—Williams [4]
showed that G has a closed trail containing at least one end of each edge of G iff
L(G) is hamiltonian. Jj

Theorem 3 also can be applied to show that G has a spanning (x, y)-trail, for
every choice of x, y€¥ (G). For this conclusion to hold, the hypothesis of Corollary
2 is not sufficient when G satisfies d) of Theorem 3. It would suffice if (8) is replaced by

n
® d(u)+d(v) > 7.
This is best possible.

Corollary 3. Let G be a 3-edge-connected simple graph of order n. If n is sufficiently
large and if

©) () +d(s) > 32

whenever uvd E(G), then G has a spanning eulerian subgraph.
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Proof. Set p=10 in Corollary 1. If a) fails, then b) holds By the deﬁmtlon of con-

tractions,
®'(Gy) = %'(6),

and so G, is 3-edge-connected. By 1nspect10n there is no 3-edge-connected graph of
order less than p with no spanning eulerian subgraph. Therefore, b) cannot hold.

Jaeger [5] showed that a graph containing two edge-disjoint spanning trees has
a spanning eulerian subgraph (such a graph is also collapsible, by (3)). We have also
used this method of collap31b1e graphs in another paper [3], to obtain other conditions
for a graph to have a spanning eulerian subgraph.

Let G, be a graph of order p satisfying

i) G, has no spanning eulerian subgraph and

ii) Any contraction G’ of G, has a spanning eulerian subgraph
The only such graphs: G1 of order at most 7 are K,, K, 3, Ky 5, and Qz—v (the cube
minus a vertex).

We claim that for any p=7, there is a graph G, of order p satisfying both i)
and ii). When p is odd, G;=K, ,_, is such a graph. We shall construct examples for
even values of p, next. Let H be a path of length 3 with consecutive vertices labelled
X1, Xg, X3, Xq. Define the graph G(s, t) of order 4+ s+1, to be the graph obtained
from H by adding s vertices with neighbourhood {x,, x;} and ¢ vertices withneigh- -
bourhood {x,, x,}. Suppose s and ¢ ar¢ even. Then the set S of odd-degree vertices of
G(s, t) is S={x;, x,}. Because of the set S, G(s, t) is not collapsible, for if I is a
forest in G (s, t), with S as the set of odd-degree vertices of I', then G(s, t)—ET)
is not connected. Therefore, if s and ¢ are even, then G (s, 1) has no spanning eulerian
subgraph, and so for any even integer p>8 G,=G(2,p—6) satrsﬁes condition i)
above. Since G, also satisfies ii), our claim is true.

We shall now show that the inequalities (4), (6), (8), and (9) are best-possxble

Form the graph G by replacmg each vertex of G, wnh a clique K, (s=1),
such that the edges of E(G,) join the corresponding cliques in G, and so that G
has order n=ps and is contractible to G,, of order p. Since G; has no spanning -
eulerian subgraph, nelther has G, and neither G; nor G is collapsible. Whenever \
uvé E(G),

duw)+d(v) = %— 2,

and if s>A4(G,), then equality holds for some u, v€EV(G). Thus, (4) and (6) barely

fail, and the conclusions of Theorem 3 and Corollary 1 fail. When G,=K, 3 - the

corresponding G shows that (8) of Corollary 2 is best-possible, and when G, is the

Petersen graph, the corresponding G shows that (9) of Corollary 3 is best-poss1ble
Corollary 3 holds even when its conclusion is changed to “G is collapsible”.

With a longer argument, it is possrble to improve (5) and (7) to n=p?, except _

for the following cases: :

p=2,n=5 G=G, =K
p=35 n=32 G =Ky,

p=6,n=38, G, isthe brpartlte theta graph of order 6.
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The first exceptional case arises in Theorem 1. In the latter two exceptional cases, as
in d) of Theorem 3, there are two adjacent vertices x,y€V(Gy), such that
d,(x)+d,(y)=p and the preimages of x and y in G are singletons with d(x)+d( y)=p
in G. It also appears possible that even n=p? is not quite best-possible, but it is close.
The details are tedious, and we omit them.

If the proof that follows were a proof of Corollary 1 directly, we would still
define G, exactly as in the beginning of the proof that follows, in terms of contrac-
tions of collapsible subgraphs of G.

3. The proof

The conclusions a), b), ¢), and d) of Theorem 3 are mutually exclusive.

Let G be a connected simple graph satisfying (4) and (5), but not a) of Theorem
3. Let ECE(G) be a minimal edge-set such that every component Hy, Hj, ..., H,
of G—E is collapsible. Since a) fails, G is not collapsible, and since each component
K, of G—E(G) is collapsible, E exists. If G has a cut-edge and p>2 then let G,
be a K, (note that (b) is satisfied and we are done); but if G has no cut-edge or
if p=2, then let G, denote the graph obtained from G by contracting all edges
of E(G)—E. Since w(G—E)=c, :

(10) | ¢ = V(G

By the minimality of E, and by (2), ,

11) ‘ G, has no 3-cycle; and
(12) G, has no multiple edges.

Since |E(G,)|=2c—2 implies that some nontrivial induced subgraph H of G, con-
tains two edge-disjoint spanning trees, both a(G))=2 and
(13) |E] = E(Gy)| = 2¢—3

follow from (3), the minimality of E, and (10). (By results we obtained in [2], either G,
has a bridge or the inequality (13) is strict.) ,

If G has a cut-edge, then since G is simple, is straightforward to show that (4)
of Theorem 3 implies either conclusion b) (p>2; G, has a cut-edge) or conclusion
c) (p=2). Hence, we shall suppose »’(G)=2 and hence that

(14) ®'(Gy) = 2.

Since the smallest 2-edge-connected noncollapsible graph is G,=C,, we may sup-
pose, without loss of generality, that '

as) c=4.
We shall use the following lemma:

Lemma. Let H be a graph, and for each xcV (H), define
B(x) = {weV(H)|wxc E(H)}

If H is triangle-free, and not a star, then the family (B(x)|x€V (H)) has a complete
system of distinct representatives,
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Proof. Let H be triangle-free and not a star. If H is the five-cycle, then the lemma

holds. We claim that if HCj,, then H¢ has a spanning subgraph in which each

component is either K, or K;. Note that the lemma follows, if we prove this claim.
By way of contradiction, suppose

(16) H is a smallest counterexample to the claim.
By inspection, we may suppose
17 [V(H)| = 6.

Since H is triangle-free and since the Ramsey number r(3, 3) is 6, (17) implies tha
H contains an independent set {x, y, z} SV (H). -
If H—{x, y, z} is not a star, then by (16), H— {x, y, z} satisfies the claim.
Since H°[{x, y, z}]=K;, H satisfies the claim, contrary to (16).
If H— {x, y, z} is a star, then by (17), H— {x, y} is not a star. By (16), H—{x, y}
satisfies the claim, and since H¢[ {x, y}]=K,, H satisfies the claim, contrary to (16). |

Proof of Theorem 3, continued. Since a) fails for G, a) also fails for G, (see [2], Theo-
rem 6). This satisfies a requirement of b). Let

V(Gl) - {xl, x2, ceey xc}.

By (11) and (14), G, satisfies the hypotheses of the lemma. Therefore, there is a system
of distinct representatives y;€B(x;) (1=i=c). The resulting set of ordered pairs

{(xlr yl)’ (xza J’z), seey (xcyc)} v
corresponds to a set E” (with multiplicities allowed) of ¢ edges of G§:

E” = {X1V1, XaVa» «-vs Xc Vo)
(A multiplicity occurs when x;=y; and x;=y; for some i andj.) Let
G” = Gi[E"]
be the subgraph of G§ induced by E”. Clearly,
(18) " G” is a spanning subgraph of Gf;
(19) Each component of G” is either a K, or a cycle; and

(20) An edge occurs more than once in E” iff it occurs exactly twice, and is the edge
of a K, component of G”.

Let ®: GG, denote the contraction-mapping defining G,. For each edge
xy€ E(G") S E(GS), the preimages @ ~1(x) and © ~(y) are distinct components of
G—E, with no edge of G joining a vertex of @ (x) to a vertex of ®~(y). For
all i with 1=i=c, pick 4;,60~1(x;) and v,6071(y;). Then wu;v,€E(G), for all i.
Denote by E’ the set (possible with multiplicities)

E’ = {uv;, uyv,, ..., u 0}

Hence, ©@[E’]=E”, and by (18), each component of G— E contains one member of
U={uy, g, ..., u;}; and since {y;, yz, ...,y } is a transversal, each component of
G—E contains one member of V={v, v, ..., v.}.
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Define N;_g(x) to be the neighbourhood of x in G— E. If for some j and &,
u;€ V(HJ) and o€ V(Hk), then

@1 |Ng- g+ Ng- gl = [V(H))|— 1+ |V (Hy)| - L.

Since each component of G— E contains exactly one ;€U and one v;€V, we can
sum (21) over E’ and get

3 (1No- 5] + W) =

= ,ZI \V(H,)| - 1+kg1 WV(H) -1 = 2(n—c).
- By E=E(G,) and by (13), there are at most 2|E|=4|V (G,)|—6=4c—6 incidences

in G of edges of E with U and at most 2|E|=4c—6 incidences in G of edges of E
with V. Hence,

22) 2 d(u)+d(v;) = 4|E| + z’ (N 5(t)] + [ No—5(v) =

=2(4c—6)+2(n—c) = 2n+6¢c—12.

Finally, we are ready to use the hypothesis of Theorem 3. Since u;v;€ E(G°), (4) and
(22) give

c (%—?——2) < Zc' d(u)+d(v;) = 2n+6¢c—12
i=1

c(n—4p) < np—6p

np—6p
(23) c< n—dp

which is less than p+ 1, by (5). Hence, by (10),

(24) VGl =c=p
Suppose that (24) holds with equality; i.e., suppose
(25) c=p

We then show that we have case d).
Arrange the components H,, H,, ..., H, of G—E such that

- (26) V(H) = V(Hy)| =... = [V(H,)I.

Case 1. Suppose |V (Hy)|=4(Gy).
Then in (22) we can choose u; and v;, for 1=i=c, so that they are not inci-
dent with E, and so the 4|E| term disappears from (22):

@7 ;1 d(u) +d(v) = 2(n—c).
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By (4) and (27), - ;

(28) c'(Z-}—z] <2(n-o),
a contradiction. Therefore, :
@) V(Hy)| = A(Gy) = c—1,

and the latter ineduality follows from (12).

Case II. Suppose that for every i=2, there is an x,€V(H,) and an x€V(H))
such that x,x,4 E(G). By (4), (25), (29), and (13), for i=2,

(30 o —2—:——2 < d(x)+d(x) =

= E|+|VH)+V(H)| -2 = 3c—4+|V(H) -2
We sum (30) over all i=2 to get

=12 < Ge- =D+ Z W) <

< (3c—4)(c—1)+n, ‘
which, by (15), is false for large n.

Case III. Suppose that for some kéZ, x, % €E(G) for all x,€V(H,) and
x € V(Hk)' Since G, is simple, by (12), this implies

(1) V(Hy)| = [V(H| = 1.

Suppose k=3. Then (31) and (26) imply V(H)={x;} for 1=i=3. By (11), two of
{x1, x2, x5} are not adjacent in G, say x; and x;. Then by (4), (25), and (13),

2 .
=2 —2 < d(x)+d(x) = |E| = 2c-3,

which contradicts (5). Hence, k=2 and

(32) - V(Hp| > 1,
if j=3. By (12),
(33) dix)=c—1, ,

and at most one edge of E(G) joins V(H,) and V(H;) (3=j=c). Thus by
(32) there is an x;€V (H;)—N(x;) whenever 3=j=c, and so

69 3de)=sQE-D+ 3 (PH)I~1) = QIE|-D+n—c.
By (4), (13), (25), (33), and (34), |
(35) a (C—2)':2c£ < éd(x1)+d(xj)§ (c—2) d(x1)+(n—c+2|E|---1) =

= (c—2)(c—D+n+3c—7.
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By (15), c=4. Unless c=4, (35), (3), and (15) combine to give a contradiction.
When c=4, (25) and (31) and k=2 imply that d) of Theorem 3 holds.
This completes Case III and the proof of Theorem 3.
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