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Abstract

Consider the problem of whether a given graph is supereulerian; i.e., whether 1t
has a spanning eulerian subgraph. A subgraph H of G is called collapsible if for every
even set X C V(H), H has a spanning connected subgraph whose set of odd-degree
vertices is X. For determining whether G is supereulerian, we previously showed that
there is no loss of generality in contracting collapsible subgraphs to single vertices: if
H is a collapsible subgraph of G, then G is supereulerian (resp., collapsible) if and
only if G/ H is supereulerian (resp., collapsible). This reduces the supereulerian graph
problem to the case where G has no collapsible subgraph except K (e.g., G is simple,
G has no Cs, and the arboricity of G is at most 2). In this paper we refine this
reduction method so that certain subgraphs, such as four-cycles, can be handled.

|. Introduction. We shall use Bondy and Murty's notation [4].

For an even subset S in V(G), define an S-subgraph of G to be any subgraph T such that

(1) G — E(T) connected
and
(2) S = {v e V(G) | dr(v) is odd}.

If for every even subset S C V(G), the graph G has an S-subgraph. then G is called collapsible.
(This is equivalent to the definition in the abstract. The use of S-subgraphs is more conve-
nient in the proofs.) For example, G = Cs is collapsible, but G = C; (t > 4) is not.

A graph is called supereulerian if it has a spanning eulerian subgraph. We regard the trivial
graph K, as being both supereulerian and collapsible. Clearly, a graph G is supereulerian if
and only if G has an R-subgraph, where

(3) R ={v e V(G)|dg(v) is odd}.

We shall generalize the concept of collapsibility to create a reduction method (Theorem 10 and
its corollaries) for showing that certain graphs are collapsible. The method can be applied to
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subgraphs such as four-cycles. Paulraja [20] has conjectured that if a graph G with 6(G) > 3
and x(G) > 2 has each of its edges in a four-cycle, then G is supereulerian. We conjecture
that such a graph is also coilapsible, and Theorem 10 and its corollaries are also intended as
tools for proving these conjectures.

2. Previous results. Most of the results in this section are from [7].

Theorem 1 [7] Let G be a graph and let 5 C V(G). If G has a spanning tree T such that
each component of G — E(T) has evenly many vertices in S, then G has an S-subgraph.

Theorem 2 Each of the following conditions implies the next:
(a) G has two edge-disjoint spanning trees:;
(b) G is collapsible:
(c) G is supereulerian.

Theorems 1 and 2 are easy to prove. Jaeger [14] proved (a) implies (c). and in [7] we
noted that by Theorem 1, (a) implies (b). That (b) implies (c) follows from the definitions,
as we noted for (3).

Let G be a graph. let H be a subgraph of G, and let S be an even subset of V(G).
Define H' to be the spanning subgraph of G with E(H) = E(H'). We define the contraction
G/H to be the graph whose vertices are the components of H', where distinct vertices of
G/H are joined in G/H by as many edges as join the corresponding components of H in G.
For e € E(G), let G/e denote G/Gle]. We define S/H to be the subset consisting of those
vertices of G/ H such that the corresponding component of the spanning subgraph H' has an
odd number of vertices in S.

Consider these two statements:
(4) G has an S—subgraph;

(5) . G/H has an (S/H)—subgraph.

Theorem 3 [7] Let H be a connected subgraph of G, and let S C V(G). Then (4) implies
(5). and if H is collapsible. then (5) implies (4).

Corollary [7] If H is a collapsible subgraph of G, then G is supereulerian (resp.. collapsible)
if and only if G/H is supereulerian (resp.. collapsible).

The supereulerian part of the corollary follows by using S = R of (3) in Theorem 3. We
conjecture a converse of this part:
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Conjecture 1 Let H be a graph. If H is not collapsible, then H has a supergraph G such
that this equivalence is false:

G is supereulerian if and only if G/H is supereulerian.

Examples: If H = K, for t even, then G = K24y satisfies Conjecture 1. If H is not
supereulerian, then G = H satisfies Conjecture 1, because G/H = K, is considered supereu-
lerian.

Theorem 4 [7] If H and H' are collapsible subgraphs of G, and if H N H' is not empty,
then H U H' is collapsible.

Hence. there is a unique family Hy, Hs, ..., H, of maximal collapsible subgraphs of G (a
collapsible subgraph is connected). Define the reduction of G to be the graph G, obtained
from G by contracting each H; (1 <1 <c) to a distinct vertex. Thus. G is supereulerian if
and only if G, is supereulerian. Also. define G to be reduced if G is the reduction of some
graph. In [7]. we proved:

Theorem 5 A graph is reduced if and only if every collapsible subgraph is trivial.
Corollary If G is reduced, then every nontrivial subgraph of G is reduced.

Theorem 6 If H is a collapsible subgraph of G, then the reduction of G equals the reduc-
tion of G/H.

Let a(G) denote the arboricity of Gj i.e.. the minimum number of edge-disjoint forests
whose union equals G. Let w(G) denote the number of components of G. We define F(G)
to be the minimum number of edges that must be added to G in order to obtain a spanning
supergraph G' of G such that G' has two edge-disjoint spanning trees. Tutte [21] and Nash-
Williams [18] proved

F(G) = max. 2(w(G—E)—-1)—- | E|.

In [7]. we applied this formula and the arboricity formula of Nash-Williams [19]. to prove:
Theorem 7 If G is reduced. then a(G) < 2; if a(G) < 2 and if G has order n, then
(6) F(G)+ | E(G)|= 2n—2.
Theorem 8 [7] If F(G) < 1, then exactly one of the following holds:

(a) G is collapsible:
(b) G has a cut-edge.

Corollary If F(G) <1 and G is reduced, then G € {K, K,}.
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The case F(G) = 0 of Theorem 8 is (a) = (b) of Theorem 2. If u,v € V(G) are sepa-
rated by a cut-edge of G, then G has no S-subgraph when S = {u,v}, and hence G is not
collapsible. The reduced graphs G = 2K; and G = Ky, (t > 1) have F(G) = 2 and show
that the bound on F(G) in Theorem 8 and its corollary is best-possible.

In [7). [9]. [10]. and [11]. we applied the previous theorems to get various conditions for
a graph G to be supereulerian, thereby proving conjectures of Bauer [2] and of Benhocine.,
Clark. Kohler. and Veldman [3]. and extending results of Brualdi and Shanny [5]. Clark [13].
Catlin [6]. Lesniak-Foster and Williamson [17]. Veldman [22]. and Zhan [23]. Lai [15] has
used this reduction method to prove some conjectures of Bauer [1]. and in [16] Lai sharpened
some results due to Chartrand and Wall [12] and Lesniak-Foster and Williamson [17].

Theorem 9 [8] f G is a collapsible graph of order n, then
3
(7 . |E(@) |2 5(a - 1).

Furthermore. for every odd natural number n, except n = 5, there is a collapsible graph G
of order n satisfying (7) with equality and containing no nontrivial collapsible proper subgraph.

We shall prove in section 4 that the condition A(G) < 3 can be added to the second part
of Theorem 9. There is no collapsible subgraph of order n =5 that does not contain the
collapsible subgraph Cj.

Conjecture 2 Let G(e) denote the graph obtained from G with an elementary subdivision
of e € E(G). If G is a collapsible graph. then either G satisfies (7) with equality, or there is
an edge e € E(G) such that G(e) is collapsible.

3. A generalization of collapsibility. Let H be a graph and let 7 be a partition of
V (H) into two sets V; and V,. Then H is called x~-collapsible (resp.. n+-collapsible) if for
every even set R C V(H),
(i) f|RNVylisodd (resp.. even). then H has an R-subgraph I':
(i) 1f | RNVy|is even, (resp., odd), then H + e has an R-subgraph T, C H, for any
added edge e = wyw; with wy € V; and wy € Va.
If H is either 7~ -collapsible or r*-collapsible, then H is called r-collapsible.

A collapsible graph H is r~-collapsible and m*-collapsible for any 2-partition 7 of V(H).

Example 1 Suppose that H is the 4-cycle abcda, and let V; = {a,c}, Vo = {b,d} be the
2-partition 7 of V (H). We show that H is m—-collapsible. Let R be an even subset of V(H).
If | RNV, |is odd. then H has an R-subgraph T, with E(T) consisting of a single edge whose
ends are the two vertices of R. Suppose | RN V3 | is even. If R = V(H), then there is a
subgraph T, satisfying (ii), where E(T.) is a perfect matching of H, such that one edge of
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E(T,) is parallel to e. If R is nonempty. then by symmetry. all other cases are equivalent to
R = {a,c} and e = ab in (ii). In this case, when T, satisfies E(T.) = {ab,bc}, (ii) holds. If
R is empty. then (ii) holds with T, edgeless, regardless of e.

Example 2 The TK, of order 8 and girth 5 is n‘-collépsible. if 7 partitions the vertex
set into divalent and trivalent vertices. We prove this in Theorem 12. (A TK, is any graph
obtained from K, by subdivisions.)

Example 3 Let G be the bipartite graph obtained from the 6-cycle abcdefa by the addition
of the edge ad. For the partition 7 = {a,c,e} U {b,d, f}, the graph G is n*-collapsible, as
we shall show. following the corollaries of Theorem 10.

Example 4 Suppose that a connected graph G has a cut-edge e, and suppose that the
components of G — e are each collapsible. Then G is nt-collapsible, where each equivalence
class of 7 is the vertex set of a component of G —e.

Example 5 If z and y are nonadjacent vertices of degree 2 in G = K3, where t > 2, then
G is 7 -collapsible, where {z,y} and V(G) — {z,y} are the equivalence classes of m. We
prove this following the corollaries of Theorem 10.

Conjecture 3 Let G be a graph. If H is a K, in G such that G/H is collapsible, then G
is 7w-collapsible, for some 2-partition 7 of V(G).

Conjecture 4 If a collapsible graph G has a vertex v of degree 2, then G —v is m-collapsible
for some 2-partition m of V(G — v).

Notation: To avoid subscripts on subscripts, we shall use deg,(v), dego(v), and degg(v),
respectively, to denote the degree of v in T's, T, and g, respectively. The graphs I'y, T,
and T will be defined in what follows. The degree of v in ' will be denoted dr(v), and d(v)
will denote the degree of v in G.

Let H be a m-collapsible subgraph of G, where V; and V, are the equivalence classes of
in V(H). Denote by G/ the graph obtained from G by identifying all vertices of V; to form
a single vertex vy, by identifying all vertices of V3 to form a single vertex v, and by joining
v, and v, with exactly one edge. Thus, each v; (i = 1,2), is joined in (G/m) — viv, to any
w € V(G) — V; — V; by as many edges as join w and V; in G. For § C V(G),. define S/m to
include S — Vy — V; and every v; (i = 1,2) such that | S NV, | is odd.

Theorem 10 Let G be a graph, S C V(G), and H be a m-collapsible induced subgraph of
G. where 7 partitions V (H) into sets V; and V; corresponding to vy and vy, respectively, in
V(G/x). If both
(8) H is 7~ —collapsible
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and

(9) G/ has an ((S/7)A{vy,v;})—subgraph,
or if both

(10) H is 77 —collapsible

and

(11) G/ has an (S/7) — subgraph,
then '

(12) G has an S—subgraph.

Proof: Let G, S, H, and = satisfy the hypothesis, and let v; (1 = 1,2) be the vertex of
G/ corresponding to the equivalence class V;.

Suppose that both (8) and (9) or both (10) and (11) hold. Then either

(13) (8) holds and G/ has an ((S/7)A{v1, v2})—subgraph T'x

({4) (10) holds and G/ has an (S/7)—subgraph T',.

By (13). (14). (1). and (2).

(15) G/m — E(T'4) is connected,

(16) (8) implies (S/7m)A{vy,v2} = {v € V(G/7) | degx(v) is odd},

(17) (10) implies (S/7) = {v € V(G/7) | deg«(v) is odd}.
Since E(T'y — v1v3) C E(G/7 — viv3) C E(G), we can define

(18) Ty = G[E(T, - v103)],

(19) So = {v € V(G) | dego(v) is odd},

and note that since Ty has an even number of odd-degree vertices,
(20) | So | is even.

Let e € E(G) — E(H). Then e € E(T,) iff e € E(T4), and so

(21) So—V(H)=S-V(H).

It follows from (16) and (17) that | (S/7)A{vy,v2} | and | S/7 | are even, and hence | S| is
even. This and (20) imply that the set

(22) R = SAS,

238



has even cardinality, and (21) and (22) imply

(23) R CV(H).
Suppose that H has an R-subgraph Tp, and define

(24) I =TrUT,.

Then Hy, = H — E(T'g) is connected. Let H,, H,,..., H; denote the components of G —
E(To) — E(H). By (15). (18). and the definition of G/m, each H; (1 < i < k) has a vertex in
ViUV, = V(H). Since E(Tr) C E(H) and E(To) C E(G) — E(H), E(Tg) and E(To) are
disjoint. Hence, (24) implies

G- E(l) = G- E(To) - E(Tr)
= G- E(To) - (E(H) — E(Ho))
= HOUHIU...UH),,‘

and since each H; (0 <1 < k) is connected and intersects Hy,
(25) G — E(T') is connected.
Since T is an R-subgraph of H,
R={veV(H)| degr(v) is odd},
which. along with (22), (19). (23). and (24). implies

= {veV(G)| dego(v)isodd}A{v € V(H) | degr(v)is odd}
= {veV(G)| dr(v)is odd}.

By (26) and (25). T is an S-subgraph of G, and so (12) holds.

Hence. we may suppose that H has no R-subgraph. Since H is m-collapsible, (ii) of the
definition holds, and so

(27) (8) implies | RNV, | is even
and
(28) (10) implies | RNV} | is odd.

Case 1 Suppose v,v; € E(T,). Then by (18).
ro == G[E(I‘,)],
and so by (19) and since v; € V(G/n) corresponds to Vi C V(G),

(29) deg,(vi) = dego(v1) = | SoNV1 | (mod 2).
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By the definition of S/,
(30) |SAVi|=|(S/mn{u}]  (mod2).
By (16) and (17).

1) (smngd] {5 gl t0 e
By (29) and (22). |
(32) dege(v1) = [SonVi]

= |(RAS)NV; |

= |[(RnW)A(SnW) .
By (27) and (28),

9 iEawssan £ 15050

By {30). (31). (32). and (33). we have
(34) (SAVi|#]SAVi|  (mod2),

a contradiction. Hence, Case 1 is impossible.

Case 2 Suppose
vz € E(F,-)

By (15). G/7 — E(T,) is connected and contains a (v, v;)-path Py, and by the condition of
Case 2, viv; & E(P,). Hence. G — E(To) — E(H) has a path

P = G[E(Py)]

whose ends we denote z; € V] and z, € V;. Since H is m-collapsible, H + z;z; has an
R-subgraph T'g, and so the subgraph

Ho=(HUP)— E(Tgr)
is a connected subgraph of G — E(Ty) — E(Tg). Set
(35) I'=TqUTp.

Let Hy, H,,..., H, denote the components of G — E(Ty) — E(H). By (15). (18). and the
definition of G/x, each H; (1 <1 < k) has a vertex in VUV, C V(H,). Hence,
G—-E(l) = G-E(To) - E(Tr)
= G- E(To) - (E(H) — E(H0))
= HQUHIU...UH;;,
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and since each H; (0 <& < k) is connected and intersects Ho,
(36) G — E(T) is connected.
Now. by (22). (19). the definition of T'g, (23). (35). and since E(To) N E(Tg) is empty,

(37) S = S,AR
{v € V(G) | dego(v) is odd}A{v € V(H) | degr(v) is odd}
{v€V(G) | dr(v) is odd}.

I

By (36) and (37). T satisfies (1) and (2). whence T is an S-subgraph of G, and so (12) holds.
This completes the proof. O

Corollary 1 If H is a m-collapsible subgraph of G for some 2-partition 7 of V(H), and if
G /= is collapsible, then G is collapsible.

Proof: Let H be a m-collapsible subgraph of G, and suppose that G/ is collapsible. Let S
be an even subset of V(G). Then (S/7)A{v1,v:} and S/ are even subsets of V(G/n), and
since G/ is collapsible, (9) and (11) of Theorem 10 hold. Since H is «- collapsible. either (8)
or (10) holds. By Theorem 10, G has an S-subgraph. Since S is arbitrary. G is collapsible. O

Corollary 2 Let H be a subgraph of G, and let = be a 2-partition of H. If H is m-collapsible
and if
G/ is supereulerian,

then
G is supereulerian.

Proof: Define

(38) S = {ve V(G) | d(v) is odd}.
Either
(39) S/m = {v € V(G/x) | dg/x(v) is odd}

or for v; and v, defined as in Theorem 10,
(40) (S/m)A{vy,v:} = {v € V(G/7) | dg/x(v) is odd}

Suppose that G/ has a spanning eulerian subgraph, say Go. Since Gy is 2-edge-connected.
the induced graph (G/n)[E(Go)A{v1v2}] is connected. and hence consists of a spanning
(v1, vs)-trail of G. Therefore, G/m has both an (S/7)-subgraph and an ((S/m) A{v1, v2})-
subgraph, where S/ satisfies (39) and (S/x)A{v;,v,} satisfies (40). Hence, both (9) and
(11) of Theorem 10 hold. Since H is m-collapsible, either (8) or (10) holds. By Theorem 10.
G has an S-subgraph T', and since S satisfies (38). G — E(T') is a spanning eulerian subgraph
of G. O
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Definitions; Let 7 be the 2-partition V(G) = X, U X,, and let H be a subgraph of G. The
restriction of 7 to H. denoted 7g, is the 2-partition V(H) =V, U V,, where

Vl"-:Xan(H), V2=inV(H)
The contraction of = to G/7x, denoted 7 /7q, is the 2-partition
V(G/WH) = (XI/VI) U (Xz/Vz)

Corollary 3 Let H be a subgraph of G, and let 7 be a 2-partition of V(G). If

(41) H is n};—collapsible and G /g is (m/mg)t —collapsible
or if
(42) H is ny—collapsible and G /g is (m/mg)~ —collapsible,

then G is w+-collapsible. Hf instead.

(43) H is nf;—collapsible and G /7 g is (m/mg)~ —collapsible
or if
(44) H is my—collapsible and G/7q is (m/mg)t —collapsible,

then G is m~-collapsible.

Proof: Let H be a subgraph of G, and let 7 be a 2-partition of V (G) into sets X, and X,.
Define
Vl‘-—“Xan(H); V2=X20V(H),

and let v; (resp.. vy) be the vertex of G/my corresponding to Vi (resp.. V2).

Case 1: Suppose (41) holds. Let S be an even subset of V(G). Then S/my is an even
subset of V(G /7). By (41). G/7g is (x/mg)* ~collapsible, and so we have

(45) G /7y has an (S/mg)—subgraph

or both

(46) | (S§/7g) N (X1/Vh) | is odd

and

(47) G/my + e has an (S/my)—subgraph I,

for any added edge e = w w; with
(48) w; € X]/Vl, we € Xz/Vz.
If (45) holds. then we have (11). and since (41) gives (10). Theorem 10 implies that

(49) G has an S—subgraph.
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Suppose that (46) and (47) hold. and let z; € X, z; € X,. Choose e = w,w; in (47)
and (48) such that w; = z; if z; & V; and w; = v; if z; € V;, for 1 = 1 and i = 2. Since
G/ng +e = (G + z1z2)/7g, (47) implies

(50) (G + z1z4) /7y has an (S/7g)—subgraph I..
By (41) we have (10). and by (50) we have (11) for G + z;z;. and so by Theorem 10.
(51) G + 1,2, has an S—subgraph. (z; € X}, z; € X3)-

Since we have either (49) or both (46) and (51) for any even subset S C V(G), G is n*-
collapsible.

Cases 2.3, and 4: Suppose (42). (43). or (44) holds. The argument of Case 1 works. O

Let G and 7 be the graph and partition of Example 3, and let H be the 4-cycle abcda inG. .
By Example 1. H is mg-collapsible, and since G/mg is a 4-cycle. it is also (w/mg) " -collapsible.
by Example 1. By (42) of Corollary 3, G is m*-collapsible.

Let G = K,; and = be the graph and partition of Example 5. and let H be the 4-cycle
containing z and y. By Example 1, H is mg-collapsible. and since G /g consists of a cut-
edge vyv, separating two collapsible subgraphs (the components of G/mg — vivy). G/my is
(m/my)*-collapsible. by Example 4. By (44) of Corollary 3. G is m~-collapsible. -

Lemma 1 If G is a TK, of order at most 6, then G is collapsible.

Proof: Let G be a TK, of order at most 6. If G has a triangle H, then H and G/H are
collapsible, and so G is collapsible, by the Corollary of Theorem 3.

Suppose G is triangle-free. Then the hypothesis of the lemma implies that G has order 6
and has a 4-cycle, say H, that contains a vertex whose degree in G is 2. By Example 1. H
is m-collapsible, where 7 is a proper 2-coloring of H. Then

'(G/r)>2, a(G/7)<2,
and so by Theorem 7,
F(G/r)=2|V(G/r)|-2—-|E(G/n)|=2(4) -2~-5=1

Hence. by Theorem 8, G/ is collapsible, and so by Corollary 1 G is collapsible. O

Let G be the unique triangle-free TK, of order 6, and let H be the four-cycle induced
by vertices of degree 3 in G. Let the partition = be a proper 2-coloring of H. Then H is
m-collapsible and since G/ has a cut-edge. G/7 is not collapsible. But, by Lemma 1, G is
collapsible, and so the converse of Corollary 1 of Theorem 10 is false.
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4. Collapsible graphs with low density. The graphs of the next theorem satisfy (7)
of Theorem 9 with equality.

Theorem 11 Let G be the graph of order 2t + 3 with 3¢ + 3 edges, with

V(G) = {IO’ Tyyeeey Tty Y0r Y15 --05 Yty U}s

where E(G) consists of the edges zoyo, Zov, exactly one of {z,v,y,v}, and (if ¢ > 0) the edge
set
t
U {Iiyi,zixe-x,yiy;—x}-
t=1

Then G is collapsible if and only if G has an odd cycle.

Proof: Suppose that G has no odd cycle, and let
' S = {w € V(G) | d(w) = 3}.

If T is an S-subgraph of G, then G — E(TI') must be connected and 2-regular, and hence a
hamiltonian cycle. But G has odd order and no odd cycle, and so G cannot be hamiltonian.
Therefore. G has no S-subgraph and cannot be collapsible.

Next. suppose that G has an odd cycle C, and suppose, inductively, that Theorem 11 holds
for graphs smaller than G. Since Theorem 11 holds when t = 0, we have a basis for induction.
Let H be the induced four-cycle z,z;_1y;_1¥:%; in G, where 1 <1 <t and ¢ is chosen so that
E(C)NE(H) # 0. Let the partition 7 of V (H) be a proper 2-coloring of H. Then C induces
an odd cycle C' in G/, where E(C") consists of E(C) — E(H) and possibly the edge vyv; of
the definition of the term 7-collapsible, depending on the parity of | E(C) n E(H) |. By the
induction hypothesis, G/ is collapsible. and since H is n-collapsible, Corollary 1 of Theorem
10 implies that G is collapsible. O

Theorem 12 Let G be a TK, of order 8 and girth 5. Define
V(G) = Vl U V2’ Vl = {a’ b,C,d}, V2 = {u,va w,z},

and define E(G) to consist of ab, cd and the edges of the hamiltonian cycle aucwbzdva. Then
G is m~-collapsible, where 7 partitions V(G) into sets V; and V;.

Proof: First, we must show that for any even R C V(G), with | RNVy| odd. G has an
R-subgraph. This is easily verified for | R | < 2. The following table gives the edge set of an
R-subgraph T, for each of the sets R listed:



R E(T)
{a,b,c,u} {ab,cu}
{a,b,e,v}  {ab,cd,dv}

{a,u,v,w} {av,cd, dv}
{b,u,v,w} {au,av, bw}
{a,b,c,u,v,w} {av, cu,bw}

{a,b,c,u,v,z}  {av, cu,bz}

All other even sets R C V(G) with | R | even and with | RNVy | odd are equivalent by sym-
metry to a set listed in the table. Hence. G satisfies (i) of the definition of n-collapsible graphs.

Next, for | R | and | RN V; | even. we must consider graphs G + 2122, where 2, € V and
z; € V,. We show that G + 2122 has an R-subgraph by proving that G + 2122 is collapsible.
By symmetry, all possible values of 2,2z, are equivalent either to 2,22 = bu or z12; = bw.
Suppose z1z; = bu. With repeated applications of the corollary of Theorem 3, it is easy
to show that G + z;z, is collapsible: it has a 3-cycle H = baub, and (G + z1z;)/H has a
3-cycle, etc., and 3-cycles are collapsible. Finally. suppose 2,2, = bw. Let H be the 2-cycle of
G + z,2; that contains b and w. The graph (G + z122)/H is the graph G of Theorem 11 with
order 2t + 3 = 7 and N(v) = {Zo,y2} (v has the same meaning in (G + 2122)/H as it has
in Theorem 11). and so (G + z12;)/ H is collapsible, by Theorem 11. Since H is collapsible.
too. the corollary of Theorem 3 implies that.G + z12; is collapsible. O
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