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Given a graph G, denote by tcl(G) the largest integer r for which G contains a
TK', a toplogical complete r-graph. We show that for every ¢ >0 almost every
graph G of order n satisfies

(2—¢e)n"? <tcl(G) < (2 + &)n'.

Throughout this paper we follow the notation and terminology of [1]. In
particular, y(G) is the chromatic number of a graph G, I'(x) is the set of
neighbours of a vertex x and TK" is a topological complete r-graph, that is, a
graph homeomorphic to a complete r-graph K’. We also define the
topological clique number tcl(G) of G as tcl(G) = max{r: G > TK"}.

A conjecture of Hajos, stating that tcl(G) > x(G), had been open for over
25 years before Catlin [4] disproved it by exhibiting counterexamples for
x(G) > 7. Catlin’s disproof of this conjecture prompted Erdos and Fajtlowicz
[5] to notice that almost every graph is a counterexample to the Hajos
conjecture. (For the basic properties of random graphs see [2, Chap.VII}.)
For it is well known (see [2] or [3] for a sharp resuit) that for ¢ > O almost
every (a.e.) graph G of order n satisfies

(log 2
2

n

n
— G log 2 )
e)lognq( )< (og 2+ ) o

On the other hand, it is shown in [5] that for some ¢, > 0
tcl(G) < ¢, n"?
for a.e. graph G of order n. Thus
1(G)/tcl(G) > ¢,n"*/log n
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for some positive constant ¢, and a.e. graph G of order n. The aim of this
paper is to show that tcl(G) is about 2n"? for a.e. graph G of order n. Conse-
quently for every ¢ > 0 and a.e. G,
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THEOREM. Let ¢ > 0. Then a.e. graph G of order n satisfies
(2—¢e)n"? <tc(G) < (2 +¢) n"~

Furthermore, a.e. G is such that every set W of m = [(2 — ¢) n"?] vertices G
is the set of branch vertices of a TK™.

Proof. Stirling’s formula has the following easy and well-known conse-
quence. The probability that after n tosses of an unbiased coin the difference
between heads and tails is at least en is not more than (2/g)e <"
Similarly, if heads occur with probability p, 0 < p < 1, then the probability
of having less than (p — ¢)n heads or more than (p + ¢)n heads is at most
e ", where ¢ > 0 depends only on p and ¢. This allows us to deduce the
following simple properties of almost all graphs.

(i) If € >0 is fixed and m/log n— oo then a.e. graph is such that
every subgraph H spanned by m vertices satisfies

i—e)m' <e(H)< (3 +e)m?
Indeed, the probability that a given H fails to satisfy the inequalities is at

most e~ ™ provided n is large enough. There are () choices for H and as
n— oo,

n —e2m? —€e2m?
( )eem gnme em?_, 0.
m

(it) Given k€N and 6 >0, a.e. graph G is such that whenever
X\, X5, Xy, are distinct vertices,

U (s ) 10a)) | > (1= Gt = o (+)

Indeed, let x,,x,,.,x,, be fixed and choose a vertex x€ V(G)—
{X,, X35, X5 ). The probability that for a given i the vertex x belongs to
I(xy; )M I(xy;) is 3, so the probability that x belongs to (U |, (I'(x,; )N
I'(x,;)) is 1 — (3)* Therefore the probability of (x) failing is at most e " for
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some constant ¢ > 0. Since there are fewer than n** choices for x,, X, ..., X5,
and

n*ke " -0 as n-— oo,

the assertion follows.
The theorem is now easily proved

(a) Suppose G contains a TK™ whose set of branch vertices is W. If
x, y € W are non-adjacent then the topological x — y edge (which is n x —y
path) contains at least one vertex not in W. As the topological edges are
disjoint, in G[W] at most n —m edges are missing. We know from (i) that
a.e. graph is such that from every subgraph spanned by [(2 + ¢) n?] vertices
more than n edges are missing. Hence almost no graph contains a 7K™ with
m=|(2+¢e)n"?].

(b) Let 0<e<i, m=|[(2—¢)n"?| and choose k,EN so that
(3) € g/2. Put § =¢/2 — (3)*. Almost every graph is such that from every
subgraph spanned by m vertices less than (1 — (¢/2))n edges are missing and
(x) 1s satisfied for k < k,.

Let G be a graph with the properties above and let W be any set of m
vertices of G. Let F < W' be the set of pairs of non-adjacent vertices of W.
(Thus F is the set of non-edges of G[W].) By our choice of G we have
|F} < (1 —¢/2)n. Define a bipartite graph with vertex classes F and
Z = V(G)— W by joining xy € F to Z € Z if z is a common neighbour of x
and y. Note that every edge of B corresponds to a path of length 2 joining
two vertices of W. In order to show that W is the set of branch vertices of a
TK™, it suffices to show that B has a matching from F into Z, for then a
TK™ can be obtained by adding appropriate paths of length 2 to G[W]|.

To complete the proof we have to check only that the condition of Hall’s
theorem [6] (see also [1, pp. 9 and 52]) is satisfied. If a set F' < F contains
a set F” of k, independent non-edges, then by (x) the graph B satisfies
()| > | T(F)| > (1= G —8)n= (1 — &/2n >|F| > |F'|. On the other
hand, if F’ does not contain k, independent non-edges then trivially

| F'| < 2kym

(for sharper estimates see |1, p. 58]). To estimate I'(F’) all we need to note is
that if x, x, € F' then by (x) applied with k = 1, for every sufficiently large n
we have

F(F) 2 T ) O (x| > G —On>2kgm > F' | 1

The theorem can easily be carried over to the case when the edges of G
are chosen independently and with a fixed probability p, that is, if we
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consider the probability space ¥ '(n, P(edge) = p) of {2, p. 123]. For every
£ >0 ae GE Y (n, Pledge) = p) satisfies

()

In conclusion we note another related result. Denote by TK™' a
topological K™ obtained from a K™ by subdividing every edge into exactly s
edges. Define k = k(s, n) to be the maximal integer satisfying

. 2 1/2
n"? < tcl(G) < g <—~——) +eln'
I—p

k+<]2()(s—l)<n.

Thus k is the maximal integer for which K" contains a TK** A slightly
more complicated version of the last part of the proof (the application of
Hall’s theorem) gives the following result.

Let s > 2 be fixed. Then for a.e. G € ' (n, P(edge) = p) we have

max{m: G > TK™"} = k(s, n).

Furthermore, a.e. G is such that every set of k vertices is the set of branch
vertices of some TK**,
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