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Hadwiger’s Conjecture is True for Almost
Every Graph

B. BoLLOBAS, P. A. CATLIN* AND P. ERDOS

The contraction clique number ccliG} of a graph G is the maximal r for which G has a
subcontraction to the complete graph K. We prove that for d > 2. almost every graph of order n
satisfies  ntilogs n+4)” ' <ccl(G)< n(log. n—d log log, m%. This inequality implies the
statement in the tifje.

1. INTRODUCTION

One of the deepest unsolved problems in graph theory is the following conjecture due to
Hadwiger {7]: x(G)= s implies G > K. In other words, every s-chromatic graph G has a
.uhcontraction to K *. the complete graph of order s. In the case s = 5, this is equivalent to
the four-colour theorem. (For an account of the various results related to Hadwiger’s
conjecture the reader is referred to [1. Chapter VIIJ: the terminology and notation not
defined here can also be found in [1].)

The statement in the title would sound rather hollow but for certain recent develop-
ments. Hajés conjectured that every s-chromatic graph contains a TK", a topological
complete subgraph of order s, that is a subdivision of K*. This is clearly stronger than
Hadwiger's conjécture. for a TK" jtself has a contraction to K°, but a graph sub-
contractible to K need not contain a TK*. The Hajos conjecture was disproved recently
by Catlin [5], who exhibited counter-examples for x(G)= 7. Shortly after Catlin’s result
Erdos and Fajtlowicz [6] showed that almost every graph is a counter-example to the
Hajés conjecture. More precisely. define the ropological clique number of a graph G as

tcl(G)=max{r: G= TK'}.
Erdos and Fajtlowicz showed that for almost every graph G of order n.
tcl(G)scné (1)
for some absolute constant ¢. Since for every £ >0 almost every graph satisfies
x(G)= (- ¢e)n/log, n.
we have that
tcl(G) < x(G

tir almost every graph (for sharp results on x(G) see [4]).
Inequality (1) was extended by Bollobas and Catlin [3], who proved that for every £ >0
dmost every graph satisfies
Q2-e)nF<tcl(G)<(2+e)n* (2)

end so

G- e)n;/log; n < y(G)/tcl(G).
In view of this it is imperative to attack Hadwiger’s conjecture by random graphs, thatis
'0examine whether or not Hadwiger's conjecture holds for almost every graph. This is
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exactly the task we shall accomplish in this note. More precisely, we shall prove an
analogue of (2) for the contraction clique number ccl(G) of a graph G. defined as

ccl(G) =max{r: G>K'}.

2. RaxpoMm GRAPHS

Let 0<p<1 be fixed, and let V be a set of n distinguishable vertices. Denote by
4(n. P(edge) = p) the discrete probability space consisting of all graphs with vertexset V.
in which the probability of a graph of size m is

m (g)—m
pT(l=p) .

In other words, the edges of a graph G € %(n, Pledge) = p) are chosen independently and
with probability p. (See [2, Chapter VII] for results concerning this model.)
Given a property  of graphs we define the probability of P as

P(?) = PG € %(n, Pledge) = p): # holds for G}).

If P(#)~ 1 as n »x then the property 2 is said to hold for almost every graph.

In order to make the calculations below a little more pleasant, we shall take p=3. The
case p= }is in some sense the most natural. since this is the model one considers implicith
when one counts the proportion of all graphs havinga given property. Indeed, in the model
4G =Y(n, P(edge)=%) every graph has the same probability, so the probability of a set
% < Gis exactly | ]/|9|. Thus a property # holds for almost every graph in 9(n, Pledge! =
1) iff the number of graphs having 2 is asymptotically equal to the number of all graphs
(with vertex set V).

3. Tue ConTrAcCTION CLIQUE NUMBER

Given a graph G and non-empty disjoint subsets Vi, Vo, oo s Vs of V = V(G).denvk
by G/{V1, .-, V,} the graph with vertex set{Vy, Va, ..., Vitin which V;is joined to ¥ i
G contains a V;— V; edge. Put

ccl'(G)=max{r: G/{V1...., V,}=K' for some Vi,..., V.}.

Since the contraction clique number is defined similarly, except with the added restrictiv?
on the V; that each G[Vi]is connected,

ccl(G) = ccl'(G).

We shall give a lower bound for ccl(G) and an upper bound for ccl’(G) holding for almet
every graph. As customary, log, x denotes the logarithm to base b.

TueoREM. Letd>2. Then almost every graph G € 4(n, P(edge) = 1) satisfies
n((logy n)}+4) ™ < ccl(G) < ccl'(G)
< n(log, n —d log, log, n)"és n((log, n)é— nh.

Proor. (a) We start with a proof of the upper bound on ccl'(G). -Pu! ‘L‘
|n(log; n —d log log, n)"2]. A partition{Vy, V3,. .., V,} of the vertex set V issaid e .
permissible for a graph G if G containsa V; — V; edge for every pair (i, j), 1 = i<j=s e
ccl'(G)=s iff the graph G has a permissible partition. We have to prove that
probability that a graph has a permissible partition tends to 0 as n—> 0.
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To start with, note rather crudely that there are at most

1’—!( " ><n" 3)

stis—1

partitions of V into s non-empty sets. The number on the left-hand side of (3) is the
number of partitions of V into s non-empty ordered sets.

Consider now a fixed partition ? ={V,, V,, ..., V,} into non-empty sets. What is the
probabiliry that this partition 2 is permissible? Let n,, n,, ..., n, be the number of
vertices in the classes. Then the probability that a graph contains no V;— V; edge is 27",
Jlence

P(P is permissible) = [I(1 =2""") < ¢ =" (4)

L)

where both the product and the sum are taken over all pairs (i, j) with 1 <i <j<s. We have
the following string of elementary inequalities.

~1 s\—1 sy—1
zz—n‘nl<;> > (nz—n,nl)(Z) - 2—(Snln/)(2) > 2—n3/::. (5)

The reader may note that 2n;n; is exactly the number of edges in the complete s-partite
graph with vertex classes Vi, V5, ..., V.. The Turén graph T,(n) is the unique s-partite
graph with maximal number of edges, and

e(Ty(n)) = (S—z_s—l+ o(i)) n: (see[2,p.71).

From (4) and (5) we have
P(2 is permissible) <e~#/2™""", 6)
and (3) and (6) imply
P(G has a permissible partition = P(ccl'(G)=s)<n" g2
=P, (7)
Clearly

log P,=nlogn —(;) 27 < n{log n— 2‘“°5='°g2"} < —3in(logy n)* - —w.

3.;log2 n

- Hence P, -0, proving the required upper bdund on ccl'(G).

(b) We turn to the proof of the lower bound on ccl(G). Put k = [(log n)5 +3], s=
[n/(k*/2)] and t = |n/(k + 2)]. We shall prove in two steps that G > K * for almost every
raph G.

Step 1. Fixaset T of ¢ vertices and put W = V — T. Then almost every graph G contains
Yvertex disjoint stars of order k + 1 whose centres are the t vertices in T,

Indeed, by a slight extension of Hall’s theorem (see [2, p- 56)) if G does not contain such
“ars then there is aset A < T for which the vertices in A have less than k|A| neighbours in
¥.Given a set A with a = |A] elements, the probability that a vertex in W is joined to no

‘ertex in A is 27° Hence the probability that the vertices in A have less than ka
®ighbours in W is at most : '

St A NS —aln—t—
Z < )2 a(n—t u)<nka2 a{n—t—ka)
u

u<ka

< nkaz——al < 2—at/2.
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Consequently the probability that G fails to contain the desired ¢ stars is at most

¥ (‘)3-“ <Y ) <2027,
a=sy a a=/
and this tends to 0.

Step 2. Let V|, V., ..., V, be the vertex sets of the stars constructed in Step 1 ip
almost every graph. Then for almost every graph G there are V,, V.., ..., V, such thq
G/{Vu, Vays - . » Vo, } =K°. The assertions in these two steps clearly imply the firg
inequality of our theorem.

Note that the sets V|, V>, .. .. V, depend only on the T — W edges of the graph. Thys
the edges joining the vertices of W are chosen independently with probability 3. Py,
W, =V, —T. We say that (W,. W)), i # . is good if there is a W, — W, edge. Since W, W’
and ;W] = k, clearly

Plthe pair (W, W,) is bad)=2"%"

and so the expected number of bad pairs is

<[) 2—k3< n- -,-—logzn-‘:log:n)! = n 2—(log2n)!.

logan” log; n
At this stage- we have several options. We may appeal either to the classical De
Moivre-Laplace theorem (see [2; p. 134]) or to the even simpler Chebyshev inequality (see
[2, p. 134]) or to the trivial inequality P(|X]|=]c|) < E(|X|)/|c| to deduce that almost every
graph has few bad pairs. For example. the last inequality implies that the probability thata
graph has more than

2 —4ilog, mi
lng n

. . -1 i N .
bad pairs is at most 272°%""_n particular, since

n _1
2 lilog. n)} >

r_

1]

log, n

for almostevery graph we can find sets W,,,, W,,,, ..., W, suchthat every pair (W,, W, )is
good. Then we have G/{V,,,.... V, }= K" and since each G[ V;]is connected, ccl{(G) = s.
as claimed.

The proof of our theorem is complete. : :
With a little more effort the lower bound can be improved to n((log, n)+1)
Furthermore, the calculations can easily be carried over to the general case. If 0<p < 1lis
fixed then almost every graph in 4(n, P(edge) = p) satisfies the inequality in the Theorem.

with log, n replaced by log, n, where b =1/q.
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