ANOTHER BOUND ON THE CHROMATIC NUMBER OF A GRAPH

Paul A. CATLIN

Department of Mathematics, Wayne State University, Detroit, MI 48202, U.S.A.

Received 2 May 1977 Revised 15 March 1978

Let G be a simple graph, let $\Delta(G)$ denote the maximum degree of its vertices, and let $\chi(G)$ denote its chromatic number. Brooks' Theorem asserts that $\chi(G) \leq \Delta(G)$, unless G has a component that is a complete graph $K_{\Delta(G)+1}$, or unless $\Delta(G)=2$ and G has an odd cycle. We show here that this bound can be improved if G does not contain certain types of subgraphs. For instance, if G has no 4-cycle, then $\chi(G) \leq \frac{2}{3}(\Delta(G)+3)$. A different result of a similar nature was recently obtained independently by us, by Borodin and Kostochka, and by Lawrence.

1. Introduction

Let G be a simple graph of maximum degree $\Delta(G) = h$ and chromatic number $\chi(G)$. The basic bound on $\chi(G)$ was given by Brooks [2]:

Theorem 1.1. For any graph G,

$$\chi(G) \leq \Delta(G) + 1$$

with equality if and only if either $\Delta(G) = 2$ and G contains an odd cycle, or G contains a clique $K_{\Delta(G)+1}$.

The odd cycle or the clique $K_{\Delta(G)+1}$ of Brooks' Theorem is necessarily a component of G.

For graphs with no clique K_{r+1} , where r is not too large, Brooks' bound was improved independently by Borodin and Kostochka [1], by Catlin [3], and by Lawrence [5]:

Theorem 1.2. For any graph G containing no K_{r+1} , where $3 \le r \le \Delta(G)$,

$$\chi(G) \leq \frac{r}{r+1} (\Delta(G)+2).$$

Borodin and Kostochka's result was stated in more general terms, and Mitchem [7] generalized the proof in [3] to independently obtain the more general result of [1].

When we use the terms "clique" or " K_{r+1} " in G, we mean "complete subgraph", and not necessarily "maximal complete subgraph".

P.A. Catlin

Let $K_{r+2}-e$ denote the complete subgraph on r+2 vertices, minus an edge. When we say that G contains no $K_{r+2}-e$ as a subgraph, we do not mean "induced subgraph". We mean that G contains no K_{r+2} also. A 4-cycle is a cycle on 4 edges.

The main result of this paper is:

2

Theorem 1.3. Let G be a graph. If G has no $K_{r+2}-e$ as a subgraph, for some $r \ge 3$, then

$$\chi(G) \leq \frac{r}{r+1} (\Delta(G)+3).$$

If also G has no 4-cycle, then

$$\chi(G) \leq \frac{2}{3} (\Delta(G) + 3).$$

In the proofs of Theorem 1.2 (see [1] or [3]) a decomposition theorem of Lovász [6] was used. Here we develop a variation of it as part of the proof of Theorem 1.3. Other variations are in [4]. Lovász's result:

Theorem 1.4. Let G be a graph and let n be a natural number. For any partition

$$h_1+h_2+\cdots+h_n=\Delta(G)-(n-1)$$

of $\Delta(G)-(n-1)$, there is a decomposition of V(G) into sets X_1, X_2, \ldots, X_n such that $\Delta(G[X_i]) \leq h_i$, for $i = 1, 2, \ldots, n$, where $G[X_i]$ is the subgraph of G induced by X_i .

One can obtain Theorem 1.2 from Theorems 1.1 and 1.4 by setting most of the h_i 's equal to r.

Borodin and Kostochka stated in a recent communication that Kostochka has proved that if the girth of G is at least $2\Delta(G)^2$, then

$$\chi(G) \leq \frac{1}{2} (\Delta(G) + 4).$$

The least value of $\Delta(G)$ for which Theorem 1.3 improves Theorems 1.1 and 1.2 is $\Delta(G) = 10$: the theorem gives $\chi(G) \leq 8$ if G has no 4-cycle. The least value of $\Delta(G)$ for which Theorem 1.3 improves Theorems 1.1 and 1.2 when $r \geq 3$ is $\Delta(G) = 18$: if G has a K_4 but has no $K_5 - e$, then Theorem 1.3 (with r = 3) gives $\chi(G) \leq 15$, while Theorem 1.2 gives only $\chi(G) \leq 16$.

We know of no examples that would show that Theorem 1.2 or 1.3 is best possible. Thus, we pose the following question: is there a constant $c_r > 0$ (depending only on r) such that for arbitrarily high values of h there are graphs G with $\Delta(G) = h$, with no K_{r+1} 's and with $\chi(G) > c_r \Delta(G)$?

2. The proof of Theorem 1.3

Consider r to be fixed by a hypothesis that G contains no $K_{r+2} - e$. If G has no 4-cycle, then set r = 2. Let $\Delta(G)$ be denoted by h, and let

$$n = \left\lceil \frac{h+2}{r+1} \right\rceil,$$

where the brackets denote the greatest integer function. Then we can write

$$h_1=h_2=\cdots=h_{n-1}=r,$$

and so for some integer h_n satisfying

$$r \le h_n = h + 2 - n(r+1) + r \le 2r$$

we have

$$h = h_1 + h_2 + \cdots + h_{n-1} + h_n + (n-2).$$

For a subset $X_i \subseteq V(G)$, we can write $G_i = G[X_i]$ (the subgraph of G induced by X_i). We also write $E(X_i) = E(G[X_i])$. Define the integer-valued function f by

$$f(X_1, X_2, ..., X_n) = h_1 |X_1| + h_2 |X_2| + ... + h_n |X_n| - |E(X_1)| - |E(X_2)| - ... - |E(X_n)|,$$

where (X_1, X_2, \ldots, X_n) is a decomposition of V(G). In particular, assume that (X_1, \ldots, X_n) is the decomposition of V(G) that

- (i) maximizes $f(X_1, \ldots, X_n)$;
- (ii) if r=2, minimizes the total number of odd cycles in all G_i 's for which $h_i=2$, such that (i) holds;
- (iii) if r>2, minimizes the total number of cliques K_{r+1} in the G_i 's for which $h_i=r$, again subject to (i).

Thus, if $h_n > r$, then G_n is not relevant to (ii) or (iii). Those odd cycles or cliques counted in (ii) or (iii) are clearly components of the respective subgraphs G_i , and we shall refer to them collectively as Brooks components, in order to use a common name.

By the maximality of f (i.e., by (i)),

$$0 \le f(X_1, \dots, X_n) - f(X_1 - x, X_2 + x, X_3, \dots, X_n)$$

$$0 \le f(X_1, \dots, X_n) - f(X_1 - x, X_2, X_3 + x, \dots, X_n)$$

$$0 \le f(X_1, \ldots, X_n) - f(X_1 - x, X_2, X_3, \ldots, X_n + x).$$

P.A. Catlin

Then by the definition of f,

4

$$0 \le h_1 |X_1| - h_1(|X_1| - 1) + h_2 |X_2| - h_2(|X_2| + 1)$$
$$-|E(X_1)| + |E(X_1 - x)| - |E(X_2)| + |E(X_2 + x)|$$

.

$$0 \le h_1 |X_1| - h_1(|X_1| - 1) + h_n |X_n| - h_n(|x_n| + 1)$$
$$-|E(X_1)| + |E(X_1 - x)| - |E(X_n)| + |E(X_n + x)|.$$

Hence, for i = 2, 3, ..., n,

$$0 \le h_1 - h_i - \deg_{G_1} x + \deg_{G[X_i + x]} x,$$

and so for each $i \ge 2$ and for i = 1, we have

$$\deg_{G_1} x \le h_1 - h_i + \deg_{G[X_i + x]} x$$
.

We sum both sides of this system of inequalities, letting i run from 1 to n, and we obtain

$$n \deg_{G_1} x \le nh_1 - \sum_{i=1}^n h_i + \sum_{i=1}^n \deg_{G[X_i + x]} x$$

$$= nh_1 - (h - n + 2) + \deg_G x$$

$$\le nh_1 + n - 2.$$

Dividing both sides by n, we get

$$\deg_{G_1} x \leq h_1 + \frac{n-2}{n},$$

and since $\deg_{G_1} x$ and h_1 are integers,

$$\deg_{G_1} x \leq h_1$$
.

In a similar manner we can obtain for $x \in X_i$ $(i \le n)$

$$\deg_{G_i} x \leq h_i$$
.

Hence, for $i = 1, 2, \ldots, n$,

$$\Delta(G_i) \leq h_i. \tag{*}$$

We claim that it sufficies to show that $\chi(G_i) \leq h_i$ for each i. Were this so, then

$$\chi(G) \leq \sum_{i=1}^{n} \chi(G_i) \leq \sum_{i=1}^{n} h_i = h - n + 2$$

$$= h - \left[\frac{h+2}{r+1}\right] + 2$$

$$\leq h - \frac{h+2}{r+1} + 1 - \frac{1}{r+1} + 2$$

$$= \frac{r}{r+1} (h+3),$$

which is the conclusion of the theorem. Thus, we must show that $\chi(G_i) \leq h_i$ for each *i*. If $h_n > r$, then by (*), Brooks' Theorem (Theorem 1.1) can be applied to G_n , for the hypotheses of Theorem 1.3 preclude Brooks components in G_n . Specifically, if r = 2, then by hypothesis, G_n contains no 4-cycle, and hence no $K_{h_n+1}(h_n \geq 3)$; if r > 2, then G_n contains no $K_{r+2} = e$ and hence, no $K_{r+2} \subseteq K_{h_n+1}(h_n \geq r+1)$. Therefore, we can restrict our attention to eliminating Brooks components from those subgraphs G_i for which $h_i = r$. Then when Brooks' Theorem is applied to these subgraphs, $\chi(G_i) \leq h_i$ follows.

• Suppose by way of contradiction that G_i contains a Brooks component C_0 (an odd cycle if $\Delta(G_i) = r = 2$, a clique K_{r+1} if $\Delta(G_i) = r > 2$), for some *i*. Let $x_0 \in V(C_0)$.

If x_0 is adjacent to at least $h_j + 1$ vertices in each set X_j for $j \neq i$, then

$$\deg_G x_0 \ge h_i + \sum_{j \ne i} (h_j + 1) = h + 1 > h,$$

contrary to hypothesis. Hence, there is some j such that x_0 is adjacent to h_j or fewer vertices in X_j .

Notice that as x_0 is moved from X_i to X_i , the maximality of f is preserved:

$$f(X_1, \ldots, X_n) = f(X_1, \ldots, X_i - x, \ldots, X_i + x, \ldots, X_n).$$

If $h_j > r$, then j = n, and since (X_1, \ldots, X_n) was chosen to minimize the number of Brooks components in G_1, \ldots, G_{n-1} (condition (ii) or (iii)), x_0 must lie in a Brooks component in G_n . But, as we have already seen, Brooks' Theorem and the hypotheses preclude Brooks components in G_n , if $h_n > r$. Therefore, $h_j = r$, although j may still equal n.

To avoid violating condition (ii) or (iii), that the number of Brooks components is minimized, subject to (i), the destruction of C_0 in G_i must be accompanied by the formation of a Brooks component C_1 containing x_0 , as x_0 is moved from G_i to X_j to form $G[X_j + x_0]$. An odd arc $C_0 - x_0$ is left behind in $G_i - x_0$ if r = 2, and if $r \ge 3$, then a clique $K_r = C_0 - x_0$ remains.

We repeat this process by picking a vertex $x_1 \neq x_0$ in $V(C_1)$ and moving it out of $X_j + x_0$. Another Brooks component C_2 is formed, leaving behind an odd arc (r=2) or a clique $K_r(r>2)$.

Since G is finite, this sequence C_0, C_1, C_2, \ldots of Brooks components in the subgraphs will eventually double back on itself for the first time. A vertex x_{m-1} will be moved into a set X^* of the altered decomposition, where it will be part of a Brooks component C_m in $G[X^*+x_{m-1}]$, and where C_m overlaps C_k for some k < m. Then either $C_m - x_{m-1}$ is the odd arc $C_k - x_k$ left behind as some vertex x_k in the sequence

$$x_0, x_1, \ldots, x_k, \ldots, x_{m-1}$$

was moved out (r=2), or $C_m - x_{m-1} = C_k - x_k$ is a clique $K_r(r>2)$ in $G[X^*]$ formed under similar circumstances. In the first case (r=2), x_{m-1} , x_k , and the two

endpoints of the odd arc

$$C_m - x_{m-1} = C_k - x_k$$

form a 4-cycle, contrary to hypothesis; in the second case (r>2), x_{m-1} , x_k , and the r-clique

$$C_m - x_{m-1} = C_k - x_k$$

form a $K_{r+2}-e$ in G, again contrary to the hypothesis of the theorem.

Thus, there are no Brooks components in the G_i 's, and so, as already demonstrated, the conclusions of the theorem follow.

References

- [1] O.V. Borodin and A.V. Kostochka, On an upper bound of a graph's chromatic number, depending on the graph's degree and density, J. Combinatorial Theory Ser. B 23 (1977) 247-250.
- [2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 27 (1941) 194–197.
- [3] P.A. Catlin, A bound on the chromatic number of a graph, Discrete Math. 22 (1978) 81-83.
- [4] P.A. Catlin, Graph decompositions satisfying extremal degree constraints, J. Graph Theory 2 (1978) 165-170.
- [5] J. Lawrence, Covering the vertex set of a graph with sub-graphs of smaller degree, Discrete Math. 21 (1978) 61-68.
- [6] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar. 1 (1966) 237-238.
- [7] J. Mitchem, On the genus of graphs with Lick-White number k, preprint.