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Let G be a simple graph, let A(G) denote the maximum degree of its vertices, and let x(G)
denote its chromatic number. Brooks’ Theorem asserts that x(G)<A(G), unless G has a
component that is a complete graph K, ()41, Or unless A(G) =2 and G has an odd cycle. We
show here that this bound can be improved if G does not contain certain types of subgraphs.
For instance, if G has no 4-cycle, then x(G)<%(4(G)+3). A different result of a similar nature
was recently obtained independently by us, by Borodin and Kostochka, and by Lawrence.

1. Introduction

Let G be a simple graph of maximum degree A(G)=h and chromatic number
x(G). The basic bound on x(G) was given by Brooks [2]:

Theorem 1.1. For any graph G,
x(G)=A(G)+1,

with equality if and only if either A(G)=2 and G contains an odd cycle, or G
contains a clique K, Gy+1-

The odd cycle or the clique Kj)+1 of Brooks’ Theorem is necessarily a
component of G.

For graphs with no clique K, .,, where r is not too large, Brooks’ bound was
improved independently by Borodin and Kostochka [1], by Catlin [3], and by
Lawrence [5]:

Theorem 1.2. For any graph G containing no K, ., where 3=r=A(G),
r
G)=—AG)+2).
X(G)=—= (A(G)+2).

Borodin and Kostochka’s result was stated in more general terms, and Mitchem
[7] generalized the proof in [3] to independently obtain the more general result of
[1].

When we use the terms “clique” or “K,,,;” in G, we mean ‘“‘complete sub-
graph”, and not necessarily “maximal complete subgraph”.

1



2 P.A. Catlin

Let K..,—e denote the complete subgraph on r+2 vertices, minus an edge.
When we say that G contains no K.,,—e as a subgraph, we do not mean
“induced subgraph”. We mean that G contains no K. also. A 4-cycle is a cycle
on 4 edges.

The main result of this paper is:

Theorem 1.3. Let G be a graph. If G has no K, ., — e as a subgraph, for some r=3,
then

X(G)=—= (A(G)+3).

If also G has no 4-cycle, then
x(G)=<3(A(G)+3).

In the proofs of Theorem 1.2 (see [1] or [3]) a decomposition theorem of
Lovasz [6] was used. Here we develop a variation of it as part of the proof of
Theorem 1.3. Other variations are in [4]. Lovész’s result:

Theorem 1.4. Let G be a graph and let n be a natural number. For any partition
h,+hy+ - +h,=A(G)—(n—1)

of A(G)—(n—1), there is a decomposition of V(G) into sets X1, X, ..., X, such
that A(G[X,)<h, fori=1,2,..., n, where G[X;] is the subgraph of G induced by
X.

One can obtain Theorem 1.2 from Theorems 1.1 and 1.4 by setting most of the
h;’s equal to r.

Borodin and Kostochka stated in a recent communication that Kostochka has
proved that if the girth of G is at least 2A(G)?, then

x(G)=<3(4(G)+4).

The least value of A(G) for which Theorem 1.3 improves Theorems 1.1and 1.2
is A(G)=10: the theorem gives x(G)=<8 if G has no 4-cycle. The least value of
A(G) for which Theorem 1.3 improves Theorems 1.1 and 1.2 when r=3 is
A(G)=18: if G has a K, but has no K5—e, then Theorem 1.3 (with r = 23) gives
x(G)=15, while Theorem 1.2 gives only x(G)=<16.

We know of no examples that would show that Theorem 1.2 or 1.3 is best
possible. Thus, we pose the following question: is there a constant ¢, >0 (depend-
ing only on r) such that for arbitrarily high values of h there are graphs G with
A(G) = h, with no K,.’s and with x(G)> cA(G)?
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2. The proof of Theorem 1.3

Consider r to be fixed by a hypothesis that G contains no K,,,—e. If G has no
4-cycle, then set r=2. Let A(G) be denoted by h, and let

_[Hz]
n= r+170

where the brackets denote the greatest integer function. Then we can write

hi=hy=:=h, =1,

and so for some integer h, satisfying
r<h,=h+2-=n(r+1)+r=<2r

we have
h=h,+h,+ - +h,_,+h,+(n—-2).

For a subset X, < V(G), we can write G; = G[X;] (the subgraph of G induced
by X;). We also write E(X;) = E(G[X;]). Define the integer-valued function f by

f(XhXZ’ LR 7Xn)= hl ‘X1l+h21X2l+ e +hn ‘an
—|EX)|—|E(X)| - - - - = |EX)l,

where (X, X, ...,X,) is a decomposition of V(G). In particular, assume that
(X,,...,X,) is the decomposition of V(G) that

(1) maximizes f(Xi,...,X.);
(i) if r=2, minimizes the total number of odd cycles in all G;’s for which
h; =2, such that (i) holds;
(iii) if r>2, minimizes the total number of cliques K., in the G;’s for which
h; =r, again subject to (i).

Thus, if h, >r, then G, is not relevant to (ii) or (iii). Those odd cycles or cliques
counted in (ii) or (iii) are clearly components of the respective subgraphs G,, and
we shall refer to them collectively as Brooks components, in order to use a
common name.

By the maximality of f (i.e., by (i),

Osf(Xl’ A ’Xn)_f(Xl_x9X2+x7 XS, s 7Xn)
0<f(Xy,...,X)—f(X;—x, X, X5+x,...,X,)

ng(Xl’ « sy Xn)—f(Xl—x, Xz, X3, « sy Xn+x).
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Then by the definition of f,
0=<hy | Xi|— (X3 = D+ hy | X5 — ho(1 X5 +1)
"|E(X1)|+1E(X1—x)|—|E(X2)‘+lE(X2+x)|

0= hy | Xy| = by (1Xa] = D) + by [ X[ = R (1, [+ 1)
—|EX)|+E(X, — )| = |E(X)|+|E(X, + x)|.

Hence, for i=2,3,...,n,
0<h,— h;—degg, x +deggx+x1 X,
and so for each i =2 and for i =1, we have
degg, x < hy — h; +deggrxx1 X-
We sum both sides of this system of inequalities, letting i run from 1 to n, and we
obtain

n aeg@ x<nh,— Z h; + Z deggrx+x] X

i=1 i=1
=nh,—(h—n+2)+degg x
<nh,+n-2.
Dividing both sides by n, we get
dogo, x<hy+2,
and since deggs. x and h,; are integers,
degg, x=<h,.
In a similar manner we can obtain for xe X, (i<n)
degs, x <h,.
Hence, for i=1,2,...,n,
A(G)=h,. (%)
We claim that it sufficies to show that x(G;) =< h; for each i. Were this so, then
X(G)= 3 X(G)= 3 h=h-n+2

i=1 i=1

+
=h-[” 2]+2
r+1
h+2 1
<h-— +1- +
r+1 r+1 2
=L _(h+3),

T r+1
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which is the conclusion of the theorem. Thus, we must show that x(G,)<h; for
each i If h, >r, then by (*), Brooks’ Theorem (Theorem 1.1) can be applied to
G,, for the hypotheses of Theorem 1.3 preclude Brooks components in G,.
Specifically, if r=2, then by hypothesis, G, contains no 4-cycle, and hence no
Ky +1(h,=3); if r>2, then G, contains no K, ,—e and hence, no K,.,<
K, .1(h, =r+1). Therefore, we can restrict our attention to eliminating Brooks
components from those subgraphs G; for which h; =r. Then when Brooks’
Theorem is applied to these subgraphs, x(G;)< h; follows.

* Suppose by way of contradiction that G, contains a Brooks component C, (an
odd cycle if A(G,)=r=2, a clique K,,, if A(G,)=r>2), for some i Let
xo€ V(C,).

If x, is adjacent to at least h;+1 vertices in each set X; for j#i, then

degs xo=h+ ) (hi+1)=h+1>h,
j#Ei
contrary to hypothesis. Hence, there is some j such that x, is adjacent to h; or
fewer vertices in X
Notice that as x,.is moved from X, to X, the maximality of f is preserved:

f(Xl,...,Xn)—‘-f(Xl,...,)(i—x,...,X}‘f'x,...,X").

If h;>r, then j=n, and since (X3, ..., X,) was chosen to minimize the number
of Brooks components in G,,..., G,_; (condition (ii) or (iii)), x, must lie in a
Brooks component in G,. But, as we have already seen, Brooks’ Theorem and the
hypotheses preclude Brooks components in G,, if h, >r. Therefore, h;=r, al-
though j may still equal n.

To avoid violating condition (ii) or (iii), that the number of Brooks components
is minimized, subject to (i), the destruction of C, in G; must be accompanied by
the formation of a Brooks component C; containing x,, as x, is moved from G; to
X; to form G[X;+x,]. An odd arc C,— x, is left behind in G, —x, if r=2, and if
r=3, then a clique K, = C,— x, remains.

We repeat this process by picking a vertex x, # x, in V(C,) and moving it out of
Xj+xo. Another Brooks component C, is formed, leaving behind an odd arc
(r=2) or a clique K,(r>?2).

Since G is finite, this sequence C,, Cy, C,, ... of Brooks components in the
subgraphs will eventually double back on itself for the first time. A vertex x,,_,
will be moved into a set X™* of the altered decomposition, where it will be part of
a Brooks component C,, in G[X*+x,,_,], and where C,, overlaps C, for some
k <m. Then either C,, —x,,_, is the odd arc C, —x, left behind as some vertex X
in the sequence

X0y X15 -« 5 Xps - 005 X1

was moved out (r=2), or C,—x,,_;=C.—x, is a clique K,(r>2) in G[X*]
formed under similar circumstances. In the first case (r =2), x,,_;, x,, and the two
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endpoints of the odd arc
Cm “Xm—17 Ck — X

form a 4-cycle, contrary to hypothesis; in the second case (r>2), X,,—1, X, and the
r-clique

Cm__xm-—1= Ck—xk

form a K.,,—e in G, again contrary to the hypothesis of the theorem.
Thus, there are no Brooks components in the G;’s, and so, as already demon-
strated, the conclusions of the theorem follow.
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