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We give an upper bound on the chromatic number of a graph in terms of its maximum degree
and the size of the largest complete subgraph. Our result extends a theorem due to Brooks.

1. Main result

Let G be a finite graph with no loops or multiple edges. Let x(G) denote the
chromatic number of G and A (G) denote the maximum degree of the vertices of
G. For a subset X of the set V(G) of vertices of G, let G[X] denote the subgraph
of G induced by X. If every pair of vertices of X is adjacent then G[X] is called a
complete subgraph of G.

It is well-known that we always have

x(G)=A(G)+ 1. (1)
If G contains a complete subgraph on A(G)+ 1 vertices then, obviously, the
equality in (1) must hold. The following basic theorem is due to Brooks [1].
Theorem 1.1. Let G be a graph with A(G)=3. If G does not contain a complete
subgraph on A(G)+ 1 vertices, then
x(G)=4(G). @)
Our main result in this paper is the following:

Theorem 1.2. Let G be any graph. If G does not contain a complete subgraph on r
vertices where 4<r <A(G)+1, then

X(G)sA(G)H—[A—(QrM]. 3)

* This research is part of the author’s Ph.D. Thesis done at the Ohio State University under Professor
Neil Robertson.
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We observe that if r = A(G)+ 1 then Theorem 1.2 reduces to Theorem 1.1.

Proof. Let n =[(4(G)+ 1)/r]. Clearly, n = 1. We define integers h,, h, ..., h, as
follows: hy =r—1for1<i<n-1and h,=A4(G)~-r(n —1). The integers h; are
nonnegative and 2;-; b, = A(G)—n + 1. Now, by a theorem due to Lovasz [2],
there exists a partition of V(G) into n sets X, X;, ..., X, such that

AG[X))<sh=r—1 fori=12,..,n-1,
A(G[X.])<h, = A(G)-r(n—1).

Since G contains no complete subgraph on r vertices, neither do the subgraphs
G[X:] for 1 <i=<n. Hence, we can easily see, using Theorem 1.1, that

x(G[Xi)=sr-1 fori=12,..,n-1,
X(G[Xn]’) <A(G)-r(n—-1).
The last inequality follows because, by definition of n, A(G)—r(n—1)=r—1,

and so Theorem 1.1 may be applied to G[X.] as well.
Finally,

X(G)< 2 x(GIX])<(n-1(r—-1)+4(CG)-r(n-1)=4(G)+1-n
i=1
and the theorem is proved.
Theorem 1.2 may be restated as follows:

Theorem 1.3. Let G be any graph. If G does not contain a complete subgraph on r
vertices where 4<r < A(G)+1, then

A(G)=—=x(G)-2 @)

2. Remarks

Let 6(G) denote the maximum number of vertices in a complete subgraph of G.
6(G) is called the clique number of G.

If x(G)= A(G), i.e., if the equality in Theorem 1.1. holds, then by (4), Theorem
1.3, we easily deduce

A(G)=6(G)=[:(4(G)+1)]. )

We do not know if the lower bound for 8(G) in (5) can be attained in general.
If 6(G) =3, then as a special case of Theorem 1.2, taking r = 4, we obtain
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In particular, if (G) <2, i.e., if G contains no triangles, then obviously (6) still
holds. However, in this case it would be natural to expect that the bound (6) can be
improved. More generally, the bound (3) or (4) may itself be improvable. In fact, we
know of no example of a graph G for which x(G)< 4(G) and the equality in (3),
Theorem 1.2, for instance, holds.

It has recently come to our attention that O.V. Borodin and A.V. Kostochka
have independently obtained Theorem 1.2. Their result appears in a preprint titled

“On an upper bound of the graph’s chromatic number depending on graph’s degree
and density”’.
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