EMBEDDING SUBGRAPHS UNDER EXTREMAL DEGREE CONDITIONS

Paul A. Catlin, Wayne State University, Detroit, MI 48202

Abstract. Let G and H be graphs on p vertices. Let $\Delta(H)$ denote the maximum degree of the vertices of H, and let G^{C} denote the complement of G. We consider the problem of giving a sufficient condition, in terms of p, $\Delta(H)$, and $\Delta(G^{C})$, for H to be a subgraph of G. We begin by summarizing known results, and we give two classes of graphs (one class is new) that show that the conjectured sufficient condition

$$(\Delta(H) + 1)(\Delta(G^C) + 1) \leq p+1$$

is best possible, if true. For the special case when H has [p/3] triangular components, we prove* the conjecture and show that these two classes of graphs G^{C} making the conjecture best possible are the <u>only</u> such extremal graphs. This improves a result of Corradi and Hajnal.

In this paper, we consider simple graphs, and we follow the notation of Harary [12], with only a few exceptions.

The complement of a graph G is denoted G^c . Letting $\deg_G(v)$ denote the degree of v in G, we have

$$\mathcal{L}_{\mathcal{A}_{\mathbf{q}}}$$
 is the constant of $\deg_{\mathbf{G}^{\mathbf{q}}}(\mathbf{v})$ and $\mathbf{p} \in \mathbf{1}$. The second of $\mathbf{p} \in \mathbf{1}$ is the second of $\mathbf{p} \in \mathbf{1}$ in $\mathbf{p} \in \mathbf{1}$.

Also, the maximum degree $\Delta(G^C)$ of G^C and the minimum degree $\delta(G)$ of the vertices of G satisfy

$$\Delta(G^{c}) + \delta(G) = p - 1.$$

For two graphs G and H, each on p vertices, an embedding of H into G is a bijection

$$\pi \colon V(H) \to V(G)$$

^{*}The proof of Theorem 6 will be published separately. It also appears in our dissertation, done at the Ohio State University under Professor Neil Robertson.

PROC. 8TH S-E CONF. COMBINATORICS, GRAPH THEORY, AND COMPUTING, pp. 139-145.

that maps edges of H to edges of G. If such an embedding exists, we say that H is a <u>subgraph</u> of G. It is frequently useful in what follows to remember that H is a subgraph of G if and only if H and G^{C} can be constructed on the same set of vertices so that $E(H) \cap E(G^{C}) = \emptyset$. Also, H is a subgraph of G if and only if G^{C} is a subgraph of H^{C} .

We consider the following problem:

Let G,H be graphs on p vertices, with $\Delta(H)$ "small". What lower bound on $\delta(G)$ (upper bound on $\Delta(G^C)$), in terms of $\Delta(H)$ and p, ensures that H is a subgraph of G?

We shall first discuss the relevant results in the literature and their relationship to a conjectured lower bound on $\delta(G)$. We exhibit two classes of graphs that show that this conjecture is best possible. In the case $\Delta(H) = 2$, we state some partial results, and we discuss a tool used to obtain them: a generalization of the method of alternating paths.

An early result of the sort we wish to consider is:

Theorem 1 (Dirac [8]). If G is a graph on $p \ge 3$ vertices, and if

 $(1) \quad \delta(G) \geq p/2,$

then G is hamiltonian.

In Dirac's Theorem, H is a cycle on p vertices, and $\Delta(H) = 2$. It has been generalized:

Theorem 2 (Bondy [2]). If G satisfies (1), then either every cycle of girth at most p is a subgraph of G, or G is the complete bipartite graph $K_{p/2,p/2}$, and G contains no cycles of odd girth.

In Bondy's Theorem, H consists of a single cycle of girth $g \le p$ and p - g isolated vertices. Of course, $\Delta(H) = 2$. Actually, Bondy's hypothesis was more general: G is hamiltonian and $|E(G)| \ge p^2/4$. However, we are concerned here with conditions in terms of $\delta(G)$.

Theorems 1 and 2 raise the question: Given a positive integer $\,h\,$, for what real number $\,c_h^{}<1\,$ does

(2)
$$\delta(G) \geq c_h p$$

guarantee that any graph H, with $\Delta(H) \le h$, is a subgraph of G? Of course, both G and H have p vertices.

In [4], we showed that

$$c_h = 1 - \frac{1}{2h(h+1)}$$

could be substituted in (1), and we remarked in a footnote that this could be improved to

$$c_{h} = 1 - \frac{1}{2h}$$
.

This is stated more precisely in the following theorem [5], also obtained independently by Sauer and Spencer [14]:

Theorem 3 If G and H are graphs on p vertices, and if

(3)
$$2\Delta(H)\Delta(G^c) \leq p-1$$
,

then H is a subgraph of G.

There are conditions for H to be a subgraph of G that are based on the cardinality of E(G), instead of $\delta(G)$. Some have been given by Erdös and Stone [10], Sauer and Spencer [14], and Bollobás and Eldridge [1]. Numerous others are listed by Erdös [9].

Except when $\Delta(H)$ or $\Delta(G^C)$ is 1, the inequality (3) is not best possible. The following, however, seems reasonable:

Conjecture For graphs G and H on p vertices, if

(4)
$$(\Delta(H) + 1)(\Delta(G^c) + 1) \le p+1$$
,

then H is a subgraph of G.

This conjecture would give the coefficient

(5)
$$c_h = 1 - \frac{1}{h+1}$$

in (1).

We give two classes of examples to show that this conjecture, if true, is best possible.

Let g,h be positive integers satisfying

(6)
$$(h+1)(g+1) = p+2$$
.

The graph H is said to be in class $C_1(h)$ when $\Delta(H) = h$, |V(H)| = p, and

when H has g components isomorphic to K_{h+1} ; H is in class $C_2(h)$ when H has g-1 components isomorphic to K_{h+1} and one component isomorphic to K_{h+1} , where h is odd and |V(H)| = p.

For any p and odd h satisfying (6), there is only one graph $H \in C_2(h)$. It is regular of degree h. If h is even, $C_2(h)$ is empty. However, any $H \in C_1(h)$ has

$$p - g(h+1) = h-1$$

vertices outside of the g components isomorphic to K_{h+1} . On these h-1 vertices, there is no restriction on the existence of edges.

Ιf

$$H \in C_1(h) \cup C_2(h)$$

and if

where p,h,g satisfy (6), then H is not a subgraph of G, unless both $H \in C_2(h)$ and $G \in C_2(g)$. By (6), these graphs barely violate (4). Therefore, (2.4) is best possible if the conjecture holds.

There are special cases for which the conjecture has been proved. By Theorem 3, the case $\Delta(H) = 1$ is one of them. There are others, of a similar nature:

Theorem 4 (Corrádi and Hajnal [7]). If H has [p/3] triangular components and if

(7)
$$\delta(G) \ge \frac{2p-1}{3}$$
, some with the state of the stat

then H is a subgraph of G.

The inequality (7) is equivalent to (4) when $\Delta(H) = 2$. By the examples above, with $H \in C_1(2)$, Theorem 4 is best possible.

Theorem 5 (Hajnal and Szemerédi [11]) Let $h \ge 2$ be an integer. If H has [p/(h+1)] components isomorphic to K_{h+1} , and if

$$(8) \qquad \delta(G) \geq \frac{hp-1}{h+1} ,$$

then H is a subgraph of G.

As before, (8) is equivalent to (4), and (8) gives the coefficient c_h of (5).

The examples above, with $H \in C_1(h)$, show that Theorem 5 is best possible.

In each case, the authors of Theorems 4 and 5 gave $C_1(g)$ as a class of graphs which showed the respective theorems to be best possible. The class $C_2(g)$ is new.

We have made some progress ([6] and [7]) in the case $\Delta(H) = 2$. First, we state the results, whose proofs are quite long, and finally we describe the tool used in obtaining these results.

Theorem 6 If H has [p/3] components isomorphic to K_3 , and if

$$\delta(G) \geq \frac{2p-2}{3},$$

then either H is a subgraph of G, or $H \in C_1(2)$, $G^c \in C_1(\frac{p-1}{3}) \cup C_2(\frac{p-1}{3})$ and H is not a subgraph of G.

This characterizes the graphs that make Theorem 4 best possible.

Theorem 7 Suppose $\Delta(H) = 2$. There is a function f satisfying $f(p) = 0(p^{1/3})$, such that if

$$\delta(G) \geq \frac{2p}{3} + f(p),$$

then H is a subgraph of G.

By the examples of Theorem 6, the coefficient $\frac{2}{3}$ is best possible. Recently, we have obtained f(p) = O(1). The details will appear at a later date.

The method we use is a generalization of the concept of alternating paths used in matching theory. There is also another general method, due to Bondy and Chvatal [3], that may be applied to similar questions concerning subgraphs or other problems. However, we shall only describe here our "method of alternating chains".

Given a mapping (not necessarily an embedding)

$$\pi: V(H) \rightarrow V(G)$$

we may regard H and G as being two graphs with the same vertex set. For instance, $w \in V(H)$ is identified with $\pi(w) \in V(G)$. Define, for each $v \in V(G)$, the <u>neighborhood</u> $N_G(v)$ of v in G to be the set of vertices adjacent in G to v. For each $v \in V(G)$, define $N_H(v) \subseteq V(G)$ to be the set of vertices adjacent in H to v, where V(H) and V(G) are identified

by π . In other words, $N_H(v) = \pi N(\pi^{-1}(v))$, where N(w) is the neighborhood of $w \in V(H)$ in H.

An alternating chain is a sequence

$$v_0, v_1, \dots, v_n$$

of distinct vertices of G having the properties

(i)
$$N_H(v_n) \subseteq N_G(v_0)$$
;

(ii)
$$N_H(v_i) \subseteq N_G(v_{i+1})$$
 for $i = 0,1,...,n-1$;

(iii)
$$v_i \in N_H(v_j)$$
 for no $i,j \in \{0,1,\ldots,n\}$.

Let α be the permutation $(v_0 \ v_1 \cdots v_n)$. Note that $\alpha\pi$ embeds into G every edge of H incident with v_0, v_1, \ldots , or v_n . Also, except for these edges, $\alpha\pi$ agrees with π . Thus, if we can find an alternating chain in which an unembedded edge of H is moved by α , then $\alpha\pi$ embeds more edges of H into G than does π . We repeat this process until the mapping π is altered so that all edges are embedded in G.

When $\Delta(H) = 1$, this amounts to the method of alternating paths commonly used with matchings.

In the proof of Theorem 3, one considers all transpositions $(v_0 \ v)$, where v_0 is incident with an unembedded edge of H, and v roams over all the vertices. When $v \notin N_H(v_0)$, the sequence v_0 , v may be an alternating chain. It is easy to show, given (3), that for some $v \in V(G)$, $(v_0 \ v)_{\Pi}$ maps more edges of H to E(G) than does π . This was done in [5] and [14].

It is routine to show that if the inequality (3) is relaxed to

$$2\Delta(H)\Delta(G^C) \leq p$$

then either H is a subgraph of G or $H \in C_1(1)$, $G^c \in C_1(\frac{p}{2}) \cup C_2(\frac{p}{2})$, or vice versa.

Although we used alternating chains in a portion of the proof of Theorem 6, their main benefit was in proving Theorem 7. Here as many as three cycles α , β , and γ (each associated with an alternating chain in G+an edge), must be found, such that $\alpha\beta\gamma\pi$ embeds one more edge of H into G than does π . The details of this are in [5] or [6].

REFERENCES

- 1. B. Bollobás and S. E. Eldridge, Packings of graphs and applications to computational complexity, to appear in J. Comb. Theory (B).
- 2. J. A. Bondy, Pancyclic graphs I, J. Comb. Theory II (1971) 80-84.
- 3. J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- 4. P. A. Catlin, Subgraphs of graphs, I, Discrete Math. 10 (1974) 225-233.
- 5. P. A. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ph.D. Dissertation, Ohio State University (1976).
- 6. P. A. Catlin, Subgraphs of graphs, III, unpublished.
- 7. H. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Hung. 14 (1963) 423-439.
- 8. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952) 69-81.
- 9. P. Erdös, Extremal problems in graph theory, Seminar on Graph Theory (F. Harary, ed.), Holt, Rinehart and Winston, New York, 1967, pp. 54-57.
- 10. P. Erdös and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
- 11. A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, Combinatorial Theory and its applications, Balatonfüred (Erdös, Renyi, V. T. Sós, ed.) North Holland, Amsterdam (1970), 601-623.
- 12. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
- 13. Problem session, Proc. 5th Brit. Combinatorial Conf., Aberdeen (1976) 690.
- 14. N. Sauer and J. Spencer, Edge disjoint placement of graphs, to appear in J. Combinatorial Theory (B).