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Abstract. Let G and H be gfaphs on p vertices. Let A(H) denote the
maximum degree of the vertices of H, and let Gc ,dép,ote the complemeht of‘
G. We consider the problem of giving a sufficient condition, in terms of p,
AH), ﬁand A(Gc‘), fo; H ‘to be a subgraph of G. We begin by summarizing
known resﬁlté; éﬁd v}e ’g'ive two ¢1asrses,do4f graphs (Q‘g‘eﬁclass is new) that show
that the conjecthi:ed spffj.cient condig%.ign

(AQH) + 1)(AGS) +1) < p+1

1s best possible, if true. For the special case when H has [p/3]  tri-
angular components, we prove* the conjecture and show that these two classes
of graphs ¢t making the conjecture best possible are the only such extremal
graphs. This improves a result of Corradi and Hajnal. H

‘ In this paper, we ggpsirder‘ -simple rg.r;aphs » and ve follow the notation of
Harary [12], with only a few exceptions. o

The complement of a graph ..G is denoted ¢S, Letting degG(v) denote
the degree of v in G, we have .

. deng(v) + deg'Gc (v) =p-1l.. -
Also, the m&im degree A(Gc) ovf‘ Gcmyanvd_ them:l.n:l.mum degree 6(G). of the
vertices of G _sat:vl,_vskfy‘

AGS) + 8(G) = p - 1.

For two graphs G and H, each om p vertices, an embeddigg' of H
into G 1is a biject}on

m: V(H) -+ V(G)

*The proof of Theorem 6 will be published separately. It also appears in
our dissertation, done at the Ohio State University under Professor Neil
Robertson.,
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that maps edges of H to edges of G. If such an embedding exists, we say
that H is a subgraph of G. It is frequently useful in what follows to re-
member that H is a subgraph of G if and only if H and G® can be con-
structed on the same set of vertices so that E(H) N E(Gc) = @, Also, H is
a subgraph of G if and only if G 1is a subgraph of H®.

We consider the following problem:

Let G,H be graphs on p vertices, with A(H) "small". What lower

bound on &8(G) (upper bound on A(Gc)), in terms of A(H) and p, ensures
that H is a subgraph of G? -

We shall first discuss the relevant results in the literature and their
relationship to a conjectured lower bound on &(G). We exhibit two classes
of graphs that show that this conjecture is best possible. 'Ih the case
A(H) = 2, we state some partial results, and we discuss a tool used to ob-
tain them: a generalization of the method of alternating paths.

An early result of the sort we wish to consider is:

Theorem 1 (Qi:ac_[B]), If G is a graph on p 2 3 vertices, and if

1) &) =p/2,
then G 1is hamiltonian.

In Dirac's Theorem, H 1is a cycle on p vertices, and A(H) = 2. It
has been generalized: |

Theorem 2 (Bondy [2]). 1f G satisfies (1), then either every cycle of
girth at most p 1is a subgraph of G, or G 1is the comﬁieﬁéLﬁipartite
graph KPIZ}pIZ’ and G contains no cycles of odd girth,

In Bondy's Theorem, H consists of a single cycle of girth g< p and
P - g 1isolated vertices. Of course, A(H) = 2. Actually; Bondy's hypoth-
esis was more general: G is hamiltonian and |E(G)| = p /4. However, we
are concerned here with conditions in terms of 8(G).

Theorems 1 and 2 raise the question: Given a positive integer h, for
what real number ¢, < 1 does

2 5@ = ep

guarantee that any graph H, with A(H) < h, is a subgraph of G? Of
course, both G and H have p vertices.
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In [4], we showed that

R T S
(th+1)

could be substituted in (1), and we remarked in a footnote that this could be
improved to -

- L
C.h 1 Zh .
This is stated more precisely in the following theorem [5], also obtained

independently by Sauer and Spencer [14]:
Theorem 3 If G and H are graphs on’ p vertices, and if

(3) 28(H)AEG%) < p-1,

then H is a subgraph of G.

There are conditions for H to be a sﬁbgraph'of G that are based on
the cardinality of E(G), instead of 6(G). Some have been given by Erdos
and Stone [10], Sauer and Spencer [14], and Bollobas and Eldridge [1]1. Numer-
ous others are listed by Erdos [9].

Except when A(H) or A(Gc)/ is 1, the 1nequality (3) is not best
possible. The following, however, seems reasonable:

- COnjecture For graphs G and H on p vertices, if

%) @@ +1)@AE%) +1) < p+l,

then H is a subgraph of G.
This conjecture would give the coefficient

1
G) e =l -5g31

in (1).

We give two classes of examples to show that this conjecture, if true, is
best possible. ‘ ' '

Let g,h be positive integers satisfying

(6) (h+1)(g+1) = p+2.

The graph H is sald to be in class Cl(h) when A(H) = h, |V(H)| = p, and
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when H has g components isomorphic to Kh+1; H 1is in class Cz(h) when
H has g-1 components isomorphic to Kh+1 and one component isomorphic to
Kh,h’ where h is odd and ]V(H)l = p.

For any p. and odd h satisfying (6), there is only one graph HGCz(h).
It is regular of degree h. If h 1is even, Cz(h) is empty. However, any
H € Cl(h) has

p-gh+l) =h-1

vertices outside of the g components isomorphic to K 41- On these h-1
vertices, there is no restriction on the existence of edges.
If : . B . .

HE€ Cl(h) U Cz(h)
and if

6% € ¢ (8) U Cye),s

where p,h,g satisfy (6), then H 1is not a subgraph of G, wunless both
H E c (h) and G € C (g) By (6), these graphs barely violate 4). There-
fore, (2 4) is best possible if the conjecture holds.

There are special cases for which the conjecture ‘has been proved. By
Theorem 3, the case A(H) = 1 is one of them. There are others, of a similar
nature: R

Theorem 4 (Corradi and Hajnal [7]). If H has [p/3] triangular com-
ponents and if '

M s 221,
then H 1is a subgraph of G.

The inequality (7) is equivalent to (4) when A(H) = 2. By the examples
above, with H € Cl(Z), Theorem 4 is best possible,

Theorem 5:(Hajnal and Szemerédi [11]) Let h = 2 be an integer. If H
has [p/(h+1)] components igsomorphic to Kh+1’ and if

hp -1
®) 80 =2 F7,

then H 1is a subgraph of G.
As before, (8) 18 equivalent to (4), and (8) gives the coefficient R of
().

- 142 -



The examples above, with H € Cl(h), show that Theorem 5 is best possi-
ble.

In each case, the authors of Theorems 4 and 5 gave Cl(g) as a class of
graphs which showed the respective theorems to be best possible. The class
Cz(g) is new. |

We have made some progress ([6] and [7]) in the case A(H) = 2. First,
we state the results, whose proofs are quite long, and fina{ly we describe the
tool used in obtaining these results. o

Theorem 6 If H has [p/3) components isomorphic to K;, and if

8(G) =2 3%-%,

then either H 1is a subgraph of G, or H € 61(2), GcCe 01(2;—1). U Cz‘(ggl-') and
H is not a subgraph of G. ' ) . .

This characterizes the graphs that make Theorem 4 best possible.ﬂ
Theorem 7 . Suppose A(H) = 2.  There is a function £ satisfying f(p) -
1/3), such that if |

o
b = 2+ £,

then H 1is a subgraph of G.

*° By the examples of Theorem 6, the coefficient % 'is best possible.
Recently, we have obtained £(p) = 0(1). The details will appear at a later
date. : B B -

The method we use is a generalization of the concept of alternating paths
used in matching theory. There is also another genmeral method, due to Bondy
and Chvatal [3], that may be applied to similar questions concerning subgraphs
or other problems. However, we shall only describe here our "method of alter-
nating chains'. o LT _'v , o | |

Given a mapping (not neceggarily an embeﬁdiqg)

w: V(H) =+ V(G),
we may regard H and G as béihg’twb_gréphs with the same vertex set, For
instance, w € V(H) 1is identified with m(w) € V(G). Define, for each
v € V(G), the neighborhood N,(v) of v im ‘G to be the set of vertices

adjacent in G to - v. For each v € V(G), define NH(V) S V(G) to be the
set of vertices adjacent in H to v, where V(H) and V(G) are identified
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by m. In other words, NH(V) = rrN(n‘l(v)), where N(w) is the neighborhood
of w€ V(H) in H.
An alternating chain is a sequence

vo’vl’ ceoe ,vn

of distinct vertices of G having the properties

W) N € Ky |
(ii) NH(vi) < NG-(vi+1) for i = 0,1,...,n-1;

(111) v, € NH(vj) for no 1i,j € {0,1,..f,n}.

Let o ‘be the petmutat‘i.on (vo vy o vn). Note that o embeds into G
every «edg(e' of H i_.ncident with vo,vl',..., or v . Also, except for these
edges, om agrees with m. Thus, if we can find an alternating chain in
which an unembedded edge of H 1is moved by «, then o embeds more edges
of H into G than does w. We repeat this process until the mapping = is
altered so that all edges are embedded in G.

When A(H) = 1, this amounts to the method of alternating paths commonly
used with matchings. | -

In the proof of Theorem 3, one considers all transpositions (v, v),
where v, is incident with an unembedded edge of H, and v roams over all
the vertices. Wlﬁ\_‘gn v § fNa,(v:o-).? . the sequence . VsV  may be an Lalterngting
chain. It is easy to show, given (3), that for some v € V(G), (v0 v)m maps
more edgeq of H to E(G) ;hgp dpes,.rr._i . This was done in [5] and [14].

It is routine to show that if the inequality (3) is relaxed to.

28(B)AE) < p,
then either H 1is a subgraph of G or HE C (1), ¢S ec,® U c,®), or
vice versa. : .

Although we used alteméting chains in a portion of the proof of"l‘h‘eorem
6, their main benefit was in proving Theorem 7. Here as many as three cycles
@, B, and Yy (each associated with an anlte._rnatingv chain in G+ an edge), must
be found', such that ofynr embeds one more edge of H into G th_anv does .
The details of this are in [5] or [6].

- 144 -



8.

9.

10.

1.

12,
13,
14.

REFERENCES
B. Bollobas and S. E. Eldridge, Packings of graphs and applications to
computational complexity, to appear in J. Comb. Theory (B).
J. A. Bondy, Pancyclic graphs I, J. Comb. Theory II (1971) 80-84.

J. A. Bondy and V. Chvatal, A method in graph theory, Discrete Math. 15
(1976) 111-135.

P. A. Catlin, Subgraphs of graphs, I, Discrete Math. 10 (1974) 225-233,

P. A, Catlin, Embedding subgraphs and coloring graphs under extremal
degree conditions, Ph.D. Dissertation, Chio State University (1976).

P. A. Catlin, Subgraphs of graphs, III, unpublished.

H. Corradi and A. Hajnal, On the maximal number of independent circuits
in a graph, Acta Math. Hung. 14 (1963) 423-439,

G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc.,
2 (1952) 69-81.

P. Erdés, Extremal problems in graph theory, Seminar on Graph Theory

(F. Harary, ed.), Holt, Rinehart and Winston, New York, 1967, pp. 54-57.

P. Erdos and A.H.Stone, On the structure of linear graphs, Bull, Amer,
Math. Soc. 52 (1946) 1087-1091.,

A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdds, Combinatorial
Theory and its applications, Balatonfiired (Erdos, Renyi, V. T. SJs, ed.)
North Holland, Amsterdam (1970), 601-623.

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
Problem session, Proc. 5th Brit, Combinatorial Conf., Aberdeen (1976) 690.

N. Sauer and J. Spencer, Edge disjoint placement of graphs, to appear in
J. Combinatorial Theory (B).

- 145 -



