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Abstract. Let G and H be two simple graphs on p vertices. We give a sufficient condition, based
on the minimum degree of the vertices of G and the maximum degree of the vertices of H, for
H to be a subgraph of G.

1. Introduction

Throughout this paper, all graphs considered are finite and simple.
The degree of a vertex v in the graph G is denoted deg; (v). The vertex
set of G is denoted V(G). We say that a graph H can be embedded into
the graph G if there is an injection 7 : V(#) —~ V(G) such that if v and
w are adjacent in [1, then m(v) and m(w) are adjacent in G. Given graphs
G and H, each having p vertices, we give a sufficient condition for the
existence of an embedding of H into G.

The notation G(/, X) stands for a bipartite graph with an ordered
bipartition of its vertex set. A bipartite graph H(J, Y) is said to be em-
bedded in G(I, X) when a pair (m, 0) of injective mappings m:J — [ and
6 : Y -~ X exists such thatifj € J and y € Y are adjacent in H(/J, V),
then mj and Ay are adjacent in G(/, X). This embedding will be denoted
by

(m, 0): HJ, Y)~> G, X).
First, we apply a theorem of Rado from transversal theory to ob-
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tain a sufficient condition that any bijection m: J - [ can be extended
to an embedding (w, 8) : H(J, Y) - G(I, X). An extensive family of bi-
partite graphs G(/, X) and H(J, Y) is constructed for which the above
sufficient condition is also necessary. We then obtain a sufficient con-
dition for embedding a graph H in a graph G, depending on the vertex
independence number §(H) of H, the maximum degree A(H) of the
vertices of H, and the minimum degree 6(G) of the vertices of G. Fi-
nally, we give a constant ' ¢(H), depending only on A(H), such that
if 6(G)= c(H)p—1, then H can be embedded in G.
Given X € V(G) anda € V(G), denote by X, the set of vertices
x € X adjacent toa (i.e., such that x and ¢ are distinct and have a com-
mon edge). For 4 € V(G), define the sets
XAH= U X, X'A=n X,
ac€A ae= A
This notation is adopted throughout this paper and applics usually to
bipartite graphs.

2. A theorem of Rado

We now give a variation of a theorem of Rado [2]. Our statement is
more like the formulation in Mirsky’s book [ 1, pp. 84—87].

Theorem 2.1 (Rado [2]). Let G, X)and H(J, Y) be bipartite graphs
with || = |J| and |\ X| = |Y|. Suppose © . J — I is a bijective mapping.
Then a necessary and sufficient condition that an embedding

(m,0): HJ, Y)-> G, X)
exists is that for any nonempty subset Y' Q' Y,
(2.1) U X"(nJ )= U YUl
Y yEY' Y

yey’

! We have recently improved Theorem 4.2 to the better, but probably not best possible, condi-
tion 8(G) = p(1-1/2A(H)).
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In [1], condition (2.1) is taken to hold for any nonempty family ¥
of subsets of J, not just the subfamilies of (/,,: ¥ € Y). Suppose J CJ
and define

Y1 =Y (U)\NY (N

We note that the nonempty Y[J'] are those of the form Y[Jy ] for
y € Y, and that the Y[Jy] are the boolean atoms generated by
(Y]-: j € J). Using these facts, one can easily see from the proofin [1]
that (2.1) is equivalent to Mirsky’s condition.

Define a bipartite graph B(X, Y) with vertex set the disjoint union
of X and Y and edge set

{{x,y}:xeX ye Yandery Cl ;.

Condition (2.1) is necessary and sufficient for a matching in B(X, Y)
which associates with each y € Y an element 0y € X. In this way the
required embedding

(m,0):-H(J, Y)~> G, X)

is produced.

3. Subgraphs of bipartite graphs

It would be of interest to know a condition for a bipartite graph
H(J, Y) to be a subgraph of another bipartite graph G(/, X). Theorem
2.1 provides a means of extending, if possible, a bijection 7 :J ~ [ to
an embedding of H(J, Y) into G(/, X). We shall let

(3.1) A, (H) = max degH(J Y)(/'),
jeJ '

3.2 A, (H)= d 7).

(3.2) y () ){réa;( egy s vyO)

Also, define

(3.3)  8,(G) = min deggs, (),
1=



228 P.A. Catlin, Subgraphs of graphs

(3.4) 6y (G)= min degg (; x,x).
xeX

We first prove the following:

Theorem 3.1. Let G(I, X) and H(J, ) be bipartite graphs with || = |J|
and | X| = |Y|. If

(3.5) Ay (H)(1X] - 6,(G)) + A,(H) (116 (G)) < |X],
then for any bijection w:J — I, there is an injection 0 : Y - X such that
(m,0): HJ, V)~ G, X)

is an embedding.

Proof. By Theorem 2.1, it suffices to prove (2.1) for any subset Y’ of Y.
By (3.1) forallj& J,

(3.6) 1Y, < A, (H),
and by (3.2) foranyy € Y,

(3.7) VI < Ay (H).

Let Y’ be a fixed subset of Y. Let R be a minimum subset of J such
that R N Jy is nonempty for all sets Jy with y € Y'. Every point in
Uey Y* (J,) lies in Y, for some j € R, and so by (3.6),

3.8 U YV, IK|IU Y, |<IRI A(H).
(8 U, US|, < j|< IR1 A,

Case 1. Suppose that
(3.9) IR > | —64(G).

Then every subset of / with at most |/] -6 4 (G) vertices is disjoint from
some member of (1/, : y € Y"). Every I, for x € X contains at least
8y (G) vertices and hence must include some n/,,. with y' e Y. Since
xe X* (nJ,+) and x € X is arbitrary,
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X= U X*(‘ITJ},).
yeyv’

We conclude that

U X"/, |=1XI=1YI=| U Y'(,),
yey vey' :

and so (2.1) holds in this case.
Cuse 11. Suppose that

(3.10)  IRI< ] - 84(G).

Let »' be a fixed member of Y. Then by (3.7) and (3.3), the set
X" (mJ,) is the intersection of the

i, = 1yl < Ay (D)

sets X, i € 7/, each X; containing all but at most | X|—-8,(G) vertices
of X. Hence X~ (TrJyf) contains all but at most Ay (H) (1X] —6,(G)) ver-
tices of X, and so,

BA1) X (@)= 1X] - Ay () (1X] -~ 5,(G)).

Therefore,
u Xx- (vrfy)t> X ()
yeyY
> X1 - Ay (D X1 —6,(G))  (by (3.11)),
= A (H)(1-064(G)) (by (3.5)),
> A, (H) IR (by (3.10)),
>‘ygy, Y*,) (by (3.8)),

whence (2.1) follows. Since (2.1) holds in cither case, this theorem
follows from Rado’s theorem.

The minimum degree scquence required to obtain the conclusions
of Theorem 3.1 may be relaxed a bit from the requirements of our re-
sult. However, in a certain sensc, Theorem 3.1 is best possible, as we
now show.

For positive integers a, b, i, n, choose disjoint sets /, X, J, ¥ such
that
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iy =1/  and |X]=1Y],
IX] and bn <Y,
ViR

anm

//\//\

M
Let m:J — I be a fixed bijective mapping. Then partitions

J =J%uJtu. . uJ"
Yy=Y'uvy'u.. uY”",
[ =1Pvtu. . urm,
X=x'ux'u..ux”

exist with
i =m and |Y/|=b for1 <j<n,
' =n and X' =a for 1 <i<m,
mJin 1 =1 forl<j<n 1<i<m

The sets J?, Y0, 1%, X° may be empty.
We construct bipartite graphs Z/(J, Y) and G(/, X), with the evident
vertex sets, and edge sets defined by

E(HUJ, Y)={{y}: jeJiandye Yiforl <i<n},
E(GUX)={{iix}:ielandxe X\ {{ix}. i€ I/ and
xeX/ forl<j<m}.
We readily see that any embedding

(m,0): H(J, Y)~> G, X)

forces 0 Y! C X0 for 1 <i< n.Such embeddings then exist if and only
if
n

U Y"<|X|A

W3

xz}

i= i

or
bn < |X| — am,
or
am+bn < | X|.

But this is exactly condition (3.5) of Theorem 3.1.
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4. Subgraphs of simple graphs

In this section we consider the problem of giving a nontrivial suffi-
cient condition for a graph to be embedded in another graph. We shall
use Theorem 3.1.

Recall that A(H) is the maximum degree of the vertices of [, 6(G) is
the minimum degree of the vertices of G, and B(#) is the cardinality of
a maximum set of independent vertices of f.

Theorem 4.1. Let G and H be graphs on p vertices. If

B(H)
4.1 S(Gy=p — —— —
D (©)=p 2A(H)

then H can be embedded in G.

Proof. Let G and A be graphs satisfying the hypothesis. There exists a
chain

H CH,, C.CHy=H

of subgraphs of H satisfying the following conditions:
(i) The graph H,, is edgeless.

(ii) H , _, has B(H) fewer vertices than H

(iii) For any k, the removal of the edges of H; from H; ., leaves a
bipartite graph with bipartition (J, Y, ) forJ; = V(H} ) and Y =
V(IH, )\ V).

Such a sequence of graphs is constructed by removing from H; a
maximum set of independent vertices to obtain H, . The three con-
ditions are then trivially satisfied.

The graph H,, , having no edges, can be embedded in G. Let this be a
basis for induction. We shall let 7, denote the embedding of /. into G,
and by using Theorem 3.1, we shall extend 7, to an embedding of .,
into G.

Let

4.3) X, = V(G)\I,.
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Let G(/;, X)) denote the bipartite graph obtained from & by removing
all edges not joining vertices of /, and X, . The desired conclusion of
Theorem 3.1 is that there is an injection 6, : Y, - X, so that m;_ and
8, define an embedding of the bipartite graph of (iii) into G(J, X).
Since 7, embeds M} also, m; and 6, define an embedding 7, of Hy
into G. Thus, we must derive the hypothesis of Theorem 3.1.

The condition (/| = |J| of Theorem 3.1 is a consequence of (4.2). To
obtain | Y] < |X], note that

Yl = |V(1]k+1)l - IV(Hk )]
= iV(flkJrl N — Ilk]
<HVCGH — 11 =1X, 1 (by (4.3)).

Finally, we must prove (3.5). In G(/;, X)),

(4.4) Sy (G, X)) = ml/{) degg Xk)(x)

X & k

>8(G) — X, |+ 1

=p - g Xl (by (1),

g BaD
=1l = S50 (by (4.3)),

and similarly,
(4.9) (G, X)) =6(G) — 1+ 1

=X - —QKXI(YZ) (by (4.1) and (4.3)).

Observe that the degree of the vertices of the bipartite graph de-
scribed in (iii) is at most A(H). For k=m, ..., A—1, we have

B(H) BH)
IAH) 2AH)

(by (4.5) and (4.4)),
=BH)=1X, I

(by (ii) and (4.3)),
< X4 (since X, _| € X;),

AU (X =)+ AN — 6y ) < A(H) 5777, A(H):-



P.A. Catlin, Subgraphs of graphs 233

from which (3.5) follows. This completes the proof.

Theorem 4.2. Let G and H be graphs on p vertices. [f

I
(4.6) 85(Gy=p (1 - m(ﬂ)(Nn)%T)) -k

then H can be embedded in G.

Proof. In view of Theorem 4.1, it suffices to prove that / has
p/(A(H)+ 1) independent vertices. Let S be a maximal set of indepen-
dent vertices of H. Since S is maximal, every vertex of /1 either lies

in S or is adjacent to a member of S. But at most A(/]) + 1 vertices ar¢
adjacent to or equal to a given vertex of S. Hence S must have at least
p/(A(H)+ 1) members, in order that all p vertices of // arc adjacent to
or equal to a member of S.
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