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CONCERNING THE ITERATED ¢ FUNCTION

P. A. CatLIN, Carnegie-Mellon University

Define a set of functions ¢ mapping integers greater than 1 into the natural
numbers, such that ¢%(a) =a and ¢™+!(a) =¢(¢"(a)), where ¢ is Euler’s function.
Furthermore, define the class C(a) of a to be the integer # such that ¢*(a) =2,
and let M be the set of natural numbers with the least value of any member in
their respective classes. Harold Shapiro made the conjecture in the last para-
graph of his article [2] that each element of M was prime, and W. H. Mills
[1] exhibited several composite members of M. The purpose of this note is to
extend their results concerning the factorization of elements of M.

" H. Shapiro gave a theorem (Theorem 15, [2]) which stated essentially that
if S is the set of numbers in class n that are less than 2*!, then the factors of
an element of .S are in S. This is also true for odd elements of M.

THEOREM 1. If m is an odd element of M, the factors of m are in M.

Proof. It is sufficient to show that an arbitrary factor is in M. i mEM is
prime, then the theorem is obvious. Otherwise, if m& M is odd, then so are its
factors. Let m =ab. By Theorem 1 of [2], C(m)=C(a)+C(b).

If b M then there must be a lower number ¢ M in the same class as b.
However, by Theorem 1 of [2], we see that C(m) = C(a)+C(b) = C(ac) where
ac <m, contradicting the definition of M. Thus, Y& M, proving the theorem.

As a consequence of Theorem 7 of [2], we can make a similar statement for
even members of M: in this case, the only prime factor of an element of M is
2, which is in M. However, 2 is the only known even member of M.
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The following theorem shows that the existence of finitely many primes in
M is equivalent to an apparently weaker condition:

TarEOREM 2. There are finitely many primes in M if and only if there are
finitely many odd numbers in M.

Proof. If there are infinitely many primes in M, then obviously there are
infinitely many odd numbers. Conversely, if an odd prime p&E M then p& M
for at most a finite number of a. This follows since p*& M implies

2aC(p) = 2C () <& e < 2aC(p)+1

or
200) & p < 20+

which is false for a sufficiently large. Thus, if M contains only finitely many odd
primes then it contains only finitely many odd prime powers; and by Theorem 1,
only finitely many odd integers.

As a corollary, Theorem 2 implies that S contains infinitely many primes if
and only if it contains infinitely many odd numbers. This follows because for
any m& M there are finitely many sESsuch that m £s<2°W+! soif M contains
finitely many primes, so does S; the converse follows from MCS.

The questions of whether or not M and S contain infinitely many odd inte-
gers remain open. In all likelihood the smallest integer of each class is odd.
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