Hamiltonian Claw-free Graphs and Line Graphs

Hong-Jian Lai

Department of Mathematics, West Virginia University

Joint work with Ye Chen, Keke Wang and Meng Zhang

The Problem

The Problem

Line graphs and claw-free graphs

The Problem

Line graphs and claw-free graphs

3-connected $\{K_{1,3}, P_k\}$ -free graphs

The Problem

Line graphs and claw-free graphs

- **3**-connected $\{K_{1,3}, P_k\}$ -free graphs
- **3**-connected $\{K_{1,3}, N_{s_1,s_2,s_3}\}$ -free graphs

The Problem

Line graphs and claw-free graphs

- **3**-connected $\{K_{1,3}, P_k\}$ -free graphs
- **3**-connected $\{K_{1,3}, N_{s_1,s_2,s_3}\}$ -free graphs
- 4-connected line graphs

Hamiltonian Graphs

A Hamilton cycle of a graph G: = a cycle containing all the vertices of G.

A hamiltonian graph: = a graph with a Hamilton cycle.

Hamiltonian Graphs

A Hamilton cycle of a graph G: = a cycle containing all the vertices of G.

A hamiltonian graph: = a graph with a Hamilton cycle.

A Hamilton path: = a path containing all the vertices of G. A hamiltonian connected graph: = for any two vertices $u, v \in V(G), G$ has a (u, v)-Hamilton path.

Hamiltonian Graphs

A Hamilton cycle of a graph G: = a cycle containing all the vertices of G.

A hamiltonian graph: = a graph with a Hamilton cycle.

A Hamilton path: = a path containing all the vertices of G. A hamiltonian connected graph: = for any two vertices $u, v \in V(G)$, G has a (u, v)-Hamilton path.

The Problem

Observation: $K_{n+1,n} = n$, but $K_{n+1,n}$ cannot have a Hamilton cycle.

The Problem

Observation: $K_{n+1,n} = n$, but $K_{n+1,n}$ cannot have a Hamilton cycle.

Question: for which kind of graphs, high connectivity will warrant hamiltonicity?

The Problem

- Observation: $K_{n+1,n} = n$, but $K_{n+1,n}$ cannot have a Hamilton cycle.
- Question: for which kind of graphs, high connectivity will warrant hamiltonicity?
- Thomassen, Matthews and Sumner: conjectured such graphs exist.

L(G): the line graph of a graph G, has E(G) as its vertex set, where two vertices in L(G) are linked if and only if the corresponding edges in G share a vertex.

L(G): the line graph of a graph G, has E(G) as its vertex set, where two vertices in L(G) are linked if and only if the corresponding edges in G share a vertex.

 \blacksquare *L*(*G*) is a simple graph.

L(G): the line graph of a graph G, has E(G) as its vertex set, where two vertices in L(G) are linked if and only if the corresponding edges in G share a vertex.

 \blacksquare *L*(*G*) is a simple graph.

L(G): the line graph of a graph G, has E(G) as its vertex set, where two vertices in L(G) are linked if and only if the corresponding edges in G share a vertex.

 \blacksquare *L*(*G*) is a simple graph.

■ L(G): the line graph of a graph G, has E(G) as its vertex set, where two vertices in L(G) are linked if and only if the corresponding edges in G share a vertex.

 \blacksquare *L*(*G*) is a simple graph.

L(G): dash lines and open circles

A claw-free graph G = a graph that does not have an induced $K_{1,3}$.

The Conjectures

A claw-free graph G = a graph that does not have an induced $K_{1,3}$.

Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.

The Conjectures

- A claw-free graph G = a graph that does not have an induced $K_{1,3}$.
- Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.
- Thomassen Conjecture: (JGT 1985) Every 4-connected line graph is hamiltonian.

The Conjectures

- A claw-free graph G = a graph that does not have an induced $K_{1,3}$.
- Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.
- Thomassen Conjecture: (JGT 1985) Every 4-connected line graph is hamiltonian.
- Matthews and Sumner Conjecture: (JGT 1984) Every 4-connected claw-free graph is hamiltonian.

Hamiltonian Line Graphs and Claw-free graphs

Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

Hamiltonian Line Graphs and Claw-free graphs

Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

Theorem (Z. Ryjáček) These are equivalent:

- (A) Every 4-connected line graph is hamiltonian.
- (B) Every 4-connected claw-free graph is hamiltonian.

Hamiltonian Line Graphs and Claw-free graphs

- Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.
- Theorem (Z. Ryjáček) These are equivalent:
 (A) Every 4-connected line graph is hamiltonian.
 (B) Every 4-connected claw-free graph is hamiltonian.
- Theorem (Kaiser and P. Vrána) Every 5-connected claw-free graph with minimum degree at least 6 is hamiltonian.

In general, 3-connected claw-free graph may not be hamiltonian.

The Petersen graph P_{10} and P'_{10}

In general, 3-connected claw-free graph may not be hamiltonian.

The Petersen graph P_{10} and P'_{10}

The line graph $L(P'_{10})$ is not hamiltonian.

Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?

- Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?
- Let H₁, H₂, ..., H_c be graphs. A graph G is {H₁, H₂, ..., H_c}-free if G does not have an induced subgraph isomorphic to an H_i in the list.

- Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?
- Let H₁, H₂, ..., H_c be graphs. A graph G is {H₁, H₂, ..., H_c}-free if G does not have an induced subgraph isomorphic to an H_i in the list.
- Theorem (Šoltés and HJL, JCTB 2001) Every 7-connected $\{K_{1,3}, K_5 e, G_3\}$ -free graph is hamiltonian-connected. (G_3 is the 3rd forbidden graph in Beineke-Robertson's characterization of a line graph).

- Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?
- Let H₁, H₂, ..., H_c be graphs. A graph G is {H₁, H₂, ..., H_c}-free if G does not have an induced subgraph isomorphic to an H_i in the list.
- Theorem (Šoltés and HJL, JCTB 2001) Every 7-connected $\{K_{1,3}, K_5 e, G_3\}$ -free graph is hamiltonian-connected. (G_3 is the 3rd forbidden graph in Beineke-Robertson's characterization of a line graph).
- Theorem: (Proved by Ryjáček and Vrána in 2011 JGT, conjectured Šoltés and HJL by in JCTB 2001) Every 7-connected K_{1,3}-free graph is hamiltonian-connected.

 \square P_n = a path on n vertices.

- \square P_n = a path on n vertices.
- Y_{s_1,s_2,s_3} = graph from disjoint paths P_{s_1+2} , P_{s_2+2} and P_{s_3+2} by identifying an end vertex of each of these three paths.

- \square P_n = a path on n vertices.
- Y_{s_1,s_2,s_3} = graph from disjoint paths P_{s_1+2} , P_{s_2+2} and P_{s_3+2} by identifying an end vertex of each of these three paths.

$$N_{s_1, s_2, s_3} = L(Y_{s_1, s_2, s_3})$$

- \square P_n = a path on n vertices.
- Y_{s_1,s_2,s_3} = graph from disjoint paths P_{s_1+2} , P_{s_2+2} and P_{s_3+2} by identifying an end vertex of each of these three paths.

$$N_{s_1, s_2, s_3} = L(Y_{s_1, s_2, s_3})$$

Examples of Y_{s_1,s_2,s_3} and N_{s_1,s_2,s_3}

Conditions Forbidding Paths And Nets

Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected {K_{1,3}, N_{1,1,1}}-free graph is hamiltonian.

Conditions Forbidding Paths And Nets

- Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected {K_{1,3}, N_{1,1,1}}-free graph is hamiltonian.
- Theorem (Brousek, Ryjáček and Favaron, DM 1999) Every 3-connected {K_{1,3}, N_{0,0,4}}-free graph is hamiltonian.

Conditions Forbidding Paths And Nets

- Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected {K_{1,3}, N_{1,1,1}}-free graph is hamiltonian.
- Theorem (Brousek, Ryjáček and Favaron, DM 1999) Every 3-connected {K_{1,3}, N_{0,0,4}}-free graph is hamiltonian.
- Theorem (Luczak and Pfender, JGT 2004) Every 3-connected $\{K_{1,3}, P_{11}\}$ -free graph is hamiltonian.

Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\{K_{1,3}, N_{0,0,8}\}$ -free graph is hamiltonian.

Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected {K_{1,3}, N_{0,0,8}}-free graph is hamiltonian.
L(P(10)') is 3-connected, {K_{1,3}, N_{0,0,9}}-free,

non-hamiltonian.

- Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\{K_{1,3}, N_{0,0,8}\}$ -free graph is hamiltonian.
- L(P(10)') is 3-connected, $\{K_{1,3}, N_{0,0,9}\}$ -free, non-hamiltonian.
- \blacksquare L(P(10)') is 3-connected, $\{K_{1,3}, P_{12}\}$ -free, non-hamiltonian.

- Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\{K_{1,3}, N_{0,0,8}\}$ -free graph is hamiltonian.
- L(P(10)') is 3-connected, $\{K_{1,3}, N_{0,0,9}\}$ -free, non-hamiltonian.
- \blacksquare L(P(10)') is 3-connected, $\{K_{1,3}, P_{12}\}$ -free, non-hamiltonian.
- Open Problem (Xiong, Yan, Yan and HJL, JGT 2010) Is L(P(10)') the only type of non-hamiltonian 3-connected $\{K_{1,3}, N_{0,0,9}\}$ -free graph?

- Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\{K_{1,3}, N_{0,0,8}\}$ -free graph is hamiltonian.
- L(P(10)') is 3-connected, $\{K_{1,3}, N_{0,0,9}\}$ -free, non-hamiltonian.
- \blacksquare L(P(10)') is 3-connected, $\{K_{1,3}, P_{12}\}$ -free, non-hamiltonian.
- Open Problem (Xiong, Yan, Yan and HJL, JGT 2010) Is L(P(10)') the only type of non-hamiltonian 3-connected $\{K_{1,3}, N_{0,0,9}\}$ -free graph?
- Theorem YES.

Example Let F_1 denote any graph in the following family.

Example Let F_1 denote any graph in the following family.

 \blacksquare $L(F_1)$ is 3-connected, P_{12} -free but non-hamiltonian.

Theorem Every 3-connected P_{12} -free line graph L(G) if hamiltonian if and only if $G \notin F_1$.

- Theorem Every 3-connected P_{12} -free line graph L(G) if hamiltonian if and only if $G \notin F_1$.
- Corollary Let Γ be a 3-connected $\{K_{1,3}, P_{12}\}$ -free graph. Then Γ is hamiltonian if and only if its closure $cl(\Gamma)$ is not the line graph L(G), for any member G in F_1 .

Forbidding *P*₁₃

• We have also determine 4 (classes of) graphs F_1, F_2, F_3, F_4 such that the following hold.

Forbidding *P*₁₃

• We have also determine 4 (classes of) graphs F_1, F_2, F_3, F_4 such that the following hold.

Theorem Every 3-connected P_{13} -free line graph L(G) if hamiltonian if and only if $G \notin F_1 \cup F_2 \cup F_3 \cup F_4$.

Forbidding *P*₁₃

- We have also determine 4 (classes of) graphs F_1, F_2, F_3, F_4 such that the following hold.
- Theorem Every 3-connected P_{13} -free line graph L(G) if hamiltonian if and only if $G \notin F_1 \cup F_2 \cup F_3 \cup F_4$.
- Corollary Let Γ be a 3-connected $\{K_{1,3}, P_{13}\}$ -free graph. Then Γ is hamiltonian if and only if its closure $cl(\Gamma)$ is not the line graph L(G), for any member G in $F_1 \cup F_2 \cup F_3 \cup F_4$.

Forbidding general nets

Theorem Let s₁, s₂, s₃ > 0 be integers such that s₁ + s₂ + s₃ ≤ 9.
(i) If s₁ + s₂ + s₃ ≤ 9, every 3-connected {K_{1,3}, N_{s1,s2,s3}}-free graph is hamiltonian.
(ii) If s₁ + s₂ ≤ 8, every 3-connected {K_{1,3}, N_{s1,s2,0}}-free graph is hamiltonian.

4-connected line graphs: Former Results

- Theorem Let L(G) be a 4-connected line graph. Each of the following holds.
 - (i) (Chen, Lai and Weng, 1994) If G is claw-free, then

L(G) is hamiltonian.

(ii) (Kriesell, JCTB 2001) If G is claw-free, then L(G) is hamiltonian-connected.

(iii) (Y. Shao, M. Zhan and HJL, DM 2008) If G is quasi claw-free, then L(G) is hamiltonian-connected.

(iv) (Y. Shao, G. Yu, M. Zhan and HJL, DAM 2009) If G

is almost claw-free, L(G) is hamiltonian-connected.

4-connected line graphs: Former Results

- Theorem Let L(G) be a 4-connected line graph. Each of the following holds.
 - (i) (Chen, Lai and Weng, 1994) If G is claw-free, then L(G) is hamiltonian.

(ii) (Kriesell, JCTB 2001) If G is claw-free, then L(G) is hamiltonian-connected.

(iii) (Y. Shao, M. Zhan and HJL, DM 2008) If G is quasi claw-free, then L(G) is hamiltonian-connected.

(iv) (Y. Shao, G. Yu, M. Zhan and HJL, DAM 2009) If G

is almost claw-free, L(G) is hamiltonian-connected.

Both QCF and ACF contain CF properly.

For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define

- For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define
- $J_G(x,y) = \{u \in N_G(x) \cap N_G(y) : N_G[u] \subseteq N_G[x] \cup N_G[y]\},$ and

- For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define
- $J_G(x,y) = \{u \in N_G(x) \cap N_G(y) : N_G[u] \subseteq N_G[x] \cup N_G[y]\},$ and
- $J'_G(x,y) = \{ u \in N_G(x) \cap N_G(y) : v \in N_G(u) (N_G[x] \cup N_G[y]) \Longrightarrow N_G(x) \cup N_G(y) \cup N_G(u) \{x,y,v\} \subseteq N_G(v) \}.$

Definition: (Ainouche, Favaron and Li, DM 2008) *G* is dominated claw toed (DCT) if for any claw $[a, a_1, a_2, a_3]$ centered as a, $J_G(a_1, a_2) \cup J_G(a_2, a_3) \cup J_G(a_1, a_3) \neq \emptyset$..

- Definition: (Ainouche, Favaron and Li, DM 2008) *G* is dominated claw toed (DCT) if for any claw $[a, a_1, a_2, a_3]$ centered as a, $J_G(a_1, a_2) \cup J_G(a_2, a_3) \cup J_G(a_1, a_3) \neq \emptyset$..
- Definition: (Broersma and Vumar, Math. Methods Oper. Res. 2009) *G* is P_3 -dominated (P3D) if for any non adjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, $J_G(x, y) \cup J'_G(x, y) \neq \emptyset$.

- Definition: (Ainouche, Favaron and Li, DM 2008) *G* is dominated claw toed (DCT) if for any claw $[a, a_1, a_2, a_3]$ centered as a, $J_G(a_1, a_2) \cup J_G(a_2, a_3) \cup J_G(a_1, a_3) \neq \emptyset$..
- Definition: (Broersma and Vumar, Math. Methods Oper. Res. 2009) *G* is P_3 -dominated (P3D) if for any non adjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, $J_G(x, y) \cup J'_G(x, y) \neq \emptyset$.
- Each of DCT and P3D graphs properly contain QCF and ACF.

4-connected line graphs: New Results

Theorem Suppose κ(L(G)) ≥ 3 and L(G) does not have an independent 3-vertex cut. Then
(i) If G is a DCT graph, then L(G) is hamiltonian.
(ii) If G is a P3D graph, then L(G) is hamiltonian.

4-connected line graphs: New Results

- Theorem Suppose κ(L(G)) ≥ 3 and L(G) does not have an independent 3-vertex cut. Then
 (i) If G is a DCT graph, then L(G) is hamiltonian.
 (ii) If G is a P3D graph, then L(G) is hamiltonian.
- Corollary:
 - (i) Every 4-connected line graph of a DCT graph is hamiltonian.
 - (ii) Every 4-connected line graph of a P3D graph is hamiltonian.

