Hamiltonian Claw-free Graphs and Line Graphs

Hong-Jian Lai

Department of Mathematics, West Virginia University
Joint work with Ye Chen, Keke Wang and Meng Zhang

Contents

■ The Problem

Contents

- The Problem

■ Line graphs and claw-free graphs

Contents

- The Problem

■ Line graphs and claw-free graphs
■ 3-connected $\left\{K_{1,3}, P_{k}\right\}$-free graphs

Contents

- The Problem

■ Line graphs and claw-free graphs
■ 3-connected $\left\{K_{1,3}, P_{k}\right\}$-free graphs
$■$ 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, s_{3}}\right\}$-free graphs

Contents

- The Problem

■ Line graphs and claw-free graphs
■ 3-connected $\left\{K_{1,3}, P_{k}\right\}$-free graphs
$■$ 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, s_{3}}\right\}$-free graphs
■ 4-connected line graphs

Hamiltonian Graphs

■ A Hamilton cycle of a graph G : = a cycle containing all the vertices of G.
A hamiltonian graph: = a graph with a Hamilton cycle

Hamiltonian Graphs

■ A Hamilton cycle of a graph G : = a cycle containing all the vertices of G.
A hamiltonian graph: = a graph with a Hamilton cycle.
■ A Hamilton path: = a path containing all the vertices of G. A hamiltonian connected graph: = for any two vertices $u, v \in V(G), G$ has a (u, v)-Hamilton path.

Hamiltonian Graphs

■ A Hamilton cycle of a graph G : = a cycle containing all the vertices of G.
A hamiltonian graph: = a graph with a Hamilton cycle.
■ A Hamilton path: = a path containing all the vertices of G. A hamiltonian connected graph: = for any two vertices $u, v \in V(G), G$ has a (u, v)-Hamilton path.

■ Examples

Hamiltonian, not
Hamiltonian-connected

Hamiltonian-connected

The Problem

\square Observation: $K_{n+1, n}=n$, but $K_{n+1, n}$ cannot have a Hamilton cycle.

The Problem

■ Observation: $K_{n+1, n}=n$, but $K_{n+1, n}$ cannot have a Hamilton cycle.

■ Question: for which kind of graphs, high connectivity will warrant hamiltonicity?

The Problem

■ Observation: $K_{n+1, n}=n$, but $K_{n+1, n}$ cannot have a Hamilton cycle.

■ Question: for which kind of graphs, high connectivity will warrant hamiltonicity?

■ Thomassen, Matthews and Sumner: conjectured such graphs exist.

Line Graphs

■ $L(G)$: the line graph of a graph G, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked if and only if the corresponding edges in G share a vertex.

Line Graphs

■ $L(G)$: the line graph of a graph G, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked if and only if the corresponding edges in G share a vertex.
$\square L(G)$ is a simple graph.

G

Line Graphs

$\square L(G)$: the line graph of a graph G, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked if and only if the corresponding edges in G share a vertex.
$\square L(G)$ is a simple graph.

Line Graphs

■ $L(G)$: the line graph of a graph G, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked if and only if the corresponding edges in G share a vertex.
$\square L(G)$ is a simple graph.

Line Graphs

■ $L(G)$: the line graph of a graph G, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are linked if and only if the corresponding edges in G share a vertex.
$\square L(G)$ is a simple graph.

G : solid lines and closed circles
$L(G)$: dash lines and open circles

Claw-free Graphs

■ a claw: an induced $K_{1,3}$

Figure 1.3

Claw-free Graphs

■ a claw: an induced $K_{1,3}$

Figure 1.3
■ claw free graph G : G does not contain an induced $K_{1,3}$

claw-free

The Conjectures

■ A claw-free graph $G=$ a graph that does not have an induced $K_{1,3}$.

The Conjectures

■ A claw-free graph $G=$ a graph that does not have an induced $K_{1,3}$.

- Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.

The Conjectures

■ A claw-free graph $G=$ a graph that does not have an induced $K_{1,3}$.
■ Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.

■ Thomassen Conjecture: (JGT 1985) Every 4-connected line graph is hamiltonian.

The Conjectures

■ A claw-free graph $G=$ a graph that does not have an induced $K_{1,3}$.

■ Theorem: (Beineke and Robertson) Every line graph is also a claw-free graph.

■ Thomassen Conjecture: (JGT 1985) Every 4-connected line graph is hamiltonian.

■ Matthews and Sumner Conjecture: (JGT 1984) Every 4-connected claw-free graph is hamiltonian.

Hamiltonian Line Graphs and Claw-free graphs

■ Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

Hamiltonian Line Graphs and Claw-free

 graphs- Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

■ Theorem (Z. Ryjáček) These are equivalent:
(A) Every 4-connected line graph is hamiltonian.
(B) Every 4-connected claw-free graph is hamiltonian.

Hamiltonian Line Graphs and Claw-free

 graphs■ Theorem (Zhan) Every 7-connected line graph is hamiltonian-connected.

- Theorem (Z. Ryjáček) These are equivalent:
(A) Every 4 -connected line graph is hamiltonian.
(B) Every 4-connected claw-free graph is hamiltonian.
\square Theorem (Kaiser and P. Vrána) Every 5-connected claw-free graph with minimum degree at least 6 is hamiltonian.

3-connected Claw-free Graphs

■ In general, 3-connected claw-free graph may not be hamiltonian.

The Petersen graph P_{10} and P_{10}^{\prime}

3-connected Claw-free Graphs

■ In general, 3-connected claw-free graph may not be hamiltonian.

The Petersen graph P_{10} and P_{10}^{\prime}
\square The line graph $L\left(P_{10}^{\prime}\right)$ is not hamiltonian.

Forbidden Induced Subgraph Conditions

■ Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?

Forbidden Induced Subgraph Conditions

■ Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?
\square Let $H_{1}, H_{2}, \ldots, H_{c}$ be graphs. A graph G is $\left\{H_{1}, H_{2}, \ldots, H_{c}\right\}$-free if G does not have an induced subgraph isomorphic to an H_{i} in the list.

Forbidden Induced Subgraph Conditions

■ Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?
\square Let $H_{1}, H_{2}, \ldots, H_{c}$ be graphs. A graph G is $\left\{H_{1}, H_{2}, \ldots, H_{c}\right\}$-free if G does not have an induced subgraph isomorphic to an H_{i} in the list.
■ Theorem (Šoltés and HJL, JCTB 2001) Every 7-connected $\left\{K_{1,3}, K_{5}-e, G_{3}\right\}$-free graph is hamiltonian-connected. (G_{3} is the 3rd forbidden graph in Beineke-Robertson's characterization of a line graph).

Forbidden Induced Subgraph Conditions

■ Question: What should be forbidden in 3-connected graphs to warrant hamiltonicity?

- Let $H_{1}, H_{2}, \ldots, H_{c}$ be graphs. A graph G is $\left\{H_{1}, H_{2}, \ldots, H_{c}\right\}$-free if G does not have an induced subgraph isomorphic to an H_{i} in the list.
- Theorem (Šoltés and HJL, JCTB 2001) Every 7-connected $\left\{K_{1,3}, K_{5}-e, G_{3}\right\}$-free graph is hamiltonian-connected. (G_{3} is the 3rd forbidden graph in Beineke-Robertson's characterization of a line graph).
- Theorem: (Proved by Ryjáček and Vrána in 2011 JGT, conjectured Šoltés and HJL by in JCTB 2001) Every 7-connected $K_{1,3}$-free graph is hamiltonian-connected.

Paths and Nets

$\square P_{n}=$ a path on n vertices.

Paths and Nets

$\square P_{n}=$ a path on n vertices.

- $Y_{s_{1}, s_{2}, s_{3}}=$ graph from disjoint paths $P_{s_{1}+2}, P_{s_{2}+2}$ and $P_{s_{3}+2}$ by identifying an end vertex of each of these three paths.

Paths and Nets

- $P_{n}=$ a path on n vertices.
$■ Y_{s_{1}, s_{2}, s_{3}}=$ graph from disjoint paths $P_{s_{1}+2}, P_{s_{2}+2}$ and $P_{s_{3}+2}$ by identifying an end vertex of each of these three paths.

■ $N_{s_{1}, s_{2}, s_{3}}=L\left(Y_{s_{1}, s_{2}, s_{3}}\right)$

Paths and Nets

■ $P_{n}=$ a path on n vertices.
$\square Y_{s_{1}, s_{2}, s_{3}}=$ graph from disjoint paths $P_{s_{1}+2}, P_{s_{2}+2}$ and $P_{s_{3}+2}$ by identifying an end vertex of each of these three paths.

■ $N_{s_{1}, s_{2}, s_{3}}=L\left(Y_{s_{1}, s_{2}, s_{3}}\right)$
$■$ Examples of $Y_{s_{1}, s_{2}, s_{3}}$ and $N_{s_{1}, s_{2}, s_{3}}$

Conditions Forbidding Paths And Nets

- Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected $\left\{K_{1,3}, N_{1,1,1}\right\}$-free graph is hamiltonian.

Conditions Forbidding Paths And Nets

- Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected $\left\{K_{1,3}, N_{1,1,1}\right\}$-free graph is hamiltonian.
- Theorem (Brousek, Ryjáǎek and Favaron, DM 1999) Every 3 -connected $\left\{K_{1,3}, N_{0,0,4}\right\}$-free graph is hamiltonian.

Conditions Forbidding Paths And Nets

- Theorem (Shepherd, PhD Thesis, U. of Waterloo, 1987) Every 3-connected $\left\{K_{1,3}, N_{1,1,1}\right\}$-free graph is hamiltonian.
- Theorem (Brousek, Ryjáček and Favaron, DM 1999) Every 3 -connected $\left\{K_{1,3}, N_{0,0,4}\right\}$-free graph is hamiltonian.
- Theorem (Luczak and Pfender, JGT 2004) Every 3 -connected $\left\{K_{1,3}, P_{11}\right\}$-free graph is hamiltonian.

How Far Can We Go?

■ Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.

How Far Can We Go?

■ Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.

■ $L\left(P(10)^{\prime}\right)$ is 3 -connected, $\left\{K_{1,3}, N_{0,0,9}\right\}$-free, non-hamiltonian.

How Far Can We Go?

■ Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.
$\square L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, N_{0,0,9}\right\}$-free, non-hamiltonian.

■ $L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, P_{12}\right\}$-free, non-hamiltonian.

How Far Can We Go?

■ Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.
$\square L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, N_{0,0,9}\right\}$-free, non-hamiltonian.

■ $L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, P_{12}\right\}$-free, non-hamiltonian.
■ Open Problem (Xiong, Yan, Yan and HJL, JGT 2010) Is $L\left(P(10)^{\prime}\right)$ the only type of non-hamiltonian 3-connected $\left\{K_{1,3}, N_{0,0,9}\right\}$-free graph?

How Far Can We Go?

■ Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.
$\square L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, N_{0,0,9}\right\}$-free, non-hamiltonian.

■ $L\left(P(10)^{\prime}\right)$ is 3-connected, $\left\{K_{1,3}, P_{12}\right\}$-free, non-hamiltonian.
■ Open Problem (Xiong, Yan, Yan and HJL, JGT 2010) Is $L\left(P(10)^{\prime}\right)$ the only type of non-hamiltonian 3-connected $\left\{K_{1,3}, N_{0,0,9}\right\}$-free graph?

■ Theorem YES.

Forbidding P_{12}

■ Example Let F_{1} denote any graph in the following family.

Forbidding P_{12}

■ Example Let F_{1} denote any graph in the following family.

$\square L\left(F_{1}\right)$ is 3-connected, P_{12}-free but non-hamiltonian.

Forbidding P_{12}

■ Theorem Every 3-connected P_{12}-free line graph $L(G)$ if hamiltonian if and only if $G \notin F_{1}$.

Forbidding P_{12}

■ Theorem Every 3-connected P_{12}-free line graph $L(G)$ if hamiltonian if and only if $G \notin F_{1}$.
$■$ Corollary Let Γ be a 3-connected $\left\{K_{1,3}, P_{12}\right\}$-free graph. Then Γ is hamiltonian if and only if its closure $c l(\Gamma)$ is not the line graph $L(G)$, for any member G in F_{1}.

Forbidding P_{13}

$■$ We have also determine 4 (classes of) graphs $F_{1}, F_{2}, F_{3}, F_{4}$ such that the following hold.

Forbidding P_{13}

$■$ We have also determine 4 (classes of) graphs $F_{1}, F_{2}, F_{3}, F_{4}$ such that the following hold.

■ Theorem Every 3-connected P_{13}-free line graph $L(G)$ if hamiltonian if and only if $G \notin F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$.

Forbidding P_{13}

\square We have also determine 4 (classes of) graphs $F_{1}, F_{2}, F_{3}, F_{4}$ such that the following hold.

■ Theorem Every 3-connected P_{13}-free line graph $L(G)$ if hamiltonian if and only if $G \notin F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$.
$■$ Corollary Let Γ be a 3-connected $\left\{K_{1,3}, P_{13}\right\}$-free graph. Then Γ is hamiltonian if and only if its closure $\operatorname{cl}(\Gamma)$ is not the line graph $L(G)$, for any member G in $F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$.

Forbidding general nets

\square Theorem Let $s_{1}, s_{2}, s_{3}>0$ be integers such that $s_{1}+s_{2}+s_{3} \leq 9$.
(i) If $s_{1}+s_{2}+s_{3} \leq 9$, every 3 -connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, s_{3}}\right\}$-free graph is hamiltonian.
(ii) If $s_{1}+s_{2} \leq 8$, every 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, 0}\right\}$-free graph is hamiltonian.

4-connected line graphs: Former Results

- Theorem Let $L(G)$ be a 4-connected line graph. Each of the following holds.
(i) (Chen, Lai and Weng, 1994) If G is claw-free, then $L(G)$ is hamiltonian.
(ii) (Kriesell, JCTB 2001) If G is claw-free, then $L(G)$ is hamiltonian-connected.
(iii) (Y. Shao, M. Zhan and HJL, DM 2008) If G is quasi claw-free, then $L(G)$ is hamiltonian-connected. (iv) (Y. Shao, G. Yu, M. Zhan and HJL, DAM 2009) If G is almost claw-free, $L(G)$ is hamiltonian-connected.

4-connected line graphs: Former Results

■ Theorem Let $L(G)$ be a 4-connected line graph. Each of the following holds.
(i) (Chen, Lai and Weng, 1994) If G is claw-free, then $L(G)$ is hamiltonian.
(ii) (Kriesell, JCTB 2001) If G is claw-free, then $L(G)$ is hamiltonian-connected.
(iii) (Y. Shao, M. Zhan and HJL, DM 2008) If G is quasi claw-free, then $L(G)$ is hamiltonian-connected. (iv) (Y. Shao, G. Yu, M. Zhan and HJL, DAM 2009) If G is almost claw-free, $L(G)$ is hamiltonian-connected.

■ Both QCF and ACF contain CF properly.

4-connected line graphs: DCT and P3D

Graphs

■ For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define

4-connected line graphs: DCT and P3D

Graphs

$■$ For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define
$\square J_{G}(x, y)=\left\{u \in N_{G}(x) \cap N_{G}(y): N_{G}[u] \subseteq N_{G}[x] \cup N_{G}[y]\right\}$, and

4-connected line graphs: DCT and P3D

Graphs

- For nonadjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, define

■ $J_{G}(x, y)=\left\{u \in N_{G}(x) \cap N_{G}(y): N_{G}[u] \subseteq N_{G}[x] \cup N_{G}[y]\right\}$, and

■ $J_{G}^{\prime}(x, y)=\left\{u \in N_{G}(x) \cap N_{G}(y): v \in N_{G}(u)-\left(N_{G}[x] \cup\right.\right.$

$$
\left.\left.N_{G}[y]\right) \Longrightarrow N_{G}(x) \cup N_{G}(y) \cup N_{G}(u)-\{x, y, v\} \subseteq N_{G}(v)\right\} .
$$

4-connected line graphs: DCT and P3D

Graphs

■ Definition: (Ainouche, Favaron and Li, DM 2008) G is dominated claw toed (DCT) if for any claw $\left[a, a_{1}, a_{2}, a_{3}\right]$ centered as $a, J_{G}\left(a_{1}, a_{2}\right) \cup J_{G}\left(a_{2}, a_{3}\right) \cup J_{G}\left(a_{1}, a_{3}\right) \neq \emptyset$..

4-connected line graphs: DCT and P3D

Graphs

■ Definition: (Ainouche, Favaron and Li, DM 2008) G is dominated claw toed (DCT) if for any claw $\left[a, a_{1}, a_{2}, a_{3}\right]$ centered as $a, J_{G}\left(a_{1}, a_{2}\right) \cup J_{G}\left(a_{2}, a_{3}\right) \cup J_{G}\left(a_{1}, a_{3}\right) \neq \emptyset$..

- Definition: (Broersma and Vumar, Math. Methods Oper. Res. 2009) G is P_{3}-dominated (P3D) if for any non adjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, $J_{G}(x, y) \cup J_{G}^{\prime}(x, y) \neq \emptyset$.

4-connected line graphs: DCT and P3D

Graphs

\square Definition: (Ainouche, Favaron and Li, DM 2008) G is dominated claw toed (DCT) if for any claw $\left[a, a_{1}, a_{2}, a_{3}\right]$ centered as $a, J_{G}\left(a_{1}, a_{2}\right) \cup J_{G}\left(a_{2}, a_{3}\right) \cup J_{G}\left(a_{1}, a_{3}\right) \neq \emptyset$..

■ Definition: (Broersma and Vumar, Math. Methods Oper. Res. 2009) G is P_{3}-dominated (P3D) if for any non adjacent $x, y \in V(G)$ with $N(x) \cap N(y) \neq \emptyset$, $J_{G}(x, y) \cup J_{G}^{\prime}(x, y) \neq \emptyset$.

■ Each of DCT and P3D graphs properly contain QCF and ACF.

4-connected line graphs: New Results

■ Theorem Suppose $\kappa(L(G)) \geq 3$ and $L(G)$ does not have an independent 3-vertex cut. Then
(i) If G is a DCT graph, then $L(G)$ is hamiltonian.
(ii) If G is a P3D graph, then $L(G)$ is hamiltonian.

4-connected line graphs: New Results

- Theorem Suppose $\kappa(L(G)) \geq 3$ and $L(G)$ does not have an independent 3 -vertex cut. Then
(i) If G is a DCT graph, then $L(G)$ is hamiltonian.
(ii) If G is a P3D graph, then $L(G)$ is hamiltonian.
- Corollary:
(i) Every 4-connected line graph of a DCT graph is hamiltonian.
(ii) Every 4-connected line graph of a P3D graph is hamiltonian.

Thank You

