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Hamiltonian Graphs

A Hamilton cycle of a graph G: = a cycle containing all the

vertices of G.

A hamiltonian graph: = a graph with a Hamilton cycle.

A Hamilton path: = a path containing all the vertices of G.

A hamiltonian connected graph: = for any two vertices

u, v ∈ V (G), G has a (u, v)-Hamilton path.

Examples
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The Problem

Observation: Kn+1,n = n, but Kn+1,n cannot have a

Hamilton cycle.

Question: for which kind of graphs, high connectivity will

warrant hamiltonicity?

Thomassen, Matthews and Sumner: conjectured such

graphs exist.
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Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked if and only if the

corresponding edges in G share a vertex.

L(G) is a simple graph.

– p. 5/22



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked if and only if the

corresponding edges in G share a vertex.

L(G) is a simple graph.

t

t

t t

t

t

G

– p. 5/22



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked if and only if the

corresponding edges in G share a vertex.

L(G) is a simple graph.

t

t

t t

t

t

d

d

d

d

d

– p. 5/22



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked if and only if the

corresponding edges in G share a vertex.

L(G) is a simple graph.

t

t

t t

t

t

d

d

d

d

d

– p. 5/22



Line Graphs

L(G): the line graph of a graph G, has E(G) as its vertex

set, where two vertices in L(G) are linked if and only if the

corresponding edges in G share a vertex.

L(G) is a simple graph.

t

t

t t

t

t

G: solid lines and closed circles

L(G): dash lines and open circles

d

d

d

d

d

– p. 5/22



Claw-free Graphs

a claw: an induced K1,3
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Figure 1.3

claw free graph G: G does not contain an induced K1,3
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The Conjectures

A claw-free graph G = a graph that does not have an

induced K1,3.

Theorem: (Beineke and Robertson) Every line graph is also

a claw-free graph.

Thomassen Conjecture: (JGT 1985) Every 4-connected

line graph is hamiltonian.

Matthews and Sumner Conjecture: (JGT 1984) Every

4-connected claw-free graph is hamiltonian.
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The Conjectures

A claw-free graph G = a graph that does not have an

induced K1,3.

Theorem: (Beineke and Robertson) Every line graph is also

a claw-free graph.

Thomassen Conjecture: (JGT 1985) Every 4-connected

line graph is hamiltonian.

Matthews and Sumner Conjecture: (JGT 1984) Every

4-connected claw-free graph is hamiltonian.

– p. 7/22



The Conjectures

A claw-free graph G = a graph that does not have an

induced K1,3.

Theorem: (Beineke and Robertson) Every line graph is also

a claw-free graph.

Thomassen Conjecture: (JGT 1985) Every 4-connected

line graph is hamiltonian.

Matthews and Sumner Conjecture: (JGT 1984) Every

4-connected claw-free graph is hamiltonian.

– p. 7/22



The Conjectures

A claw-free graph G = a graph that does not have an

induced K1,3.

Theorem: (Beineke and Robertson) Every line graph is also

a claw-free graph.

Thomassen Conjecture: (JGT 1985) Every 4-connected

line graph is hamiltonian.

Matthews and Sumner Conjecture: (JGT 1984) Every

4-connected claw-free graph is hamiltonian.

– p. 7/22



Hamiltonian Line Graphs and Claw-free

graphs

Theorem (Zhan) Every 7-connected line graph is

hamiltonian-connected.

Theorem (Z. Ryjác̆ek) These are equivalent:

(A) Every 4-connected line graph is hamiltonian.

(B) Every 4-connected claw-free graph is hamiltonian.

Theorem (Kaiser and P. Vrána) Every 5-connected claw-free

graph with minimum degree at least 6 is hamiltonian.
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3-connected Claw-free Graphs

In general, 3-connected claw-free graph may not be

hamiltonian.
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The line graph L(P ′

10) is not hamiltonian.
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Forbidden Induced Subgraph Conditions

Question: What should be forbidden in 3-connected graphs

to warrant hamiltonicity?

Let H1,H2, ...,Hc be graphs. A graph G is

{H1,H2, ...,Hc}-free if G does not have an induced

subgraph isomorphic to an Hi in the list.

Theorem (Šoltés and HJL, JCTB 2001) Every 7-connected

{K1,3,K5 − e,G3}-free graph is hamiltonian-connected. (G3

is the 3rd forbidden graph in Beineke-Robertson’s

characterization of a line graph).

Theorem: (Proved by Ryjác̆ek and Vrána in 2011 JGT,

conjectured Šoltés and HJL by in JCTB 2001) Every

7-connected K1,3-free graph is hamiltonian-connected.
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Paths and Nets

Pn = a path on n vertices.

Ys1,s2,s3
= graph from disjoint paths Ps1+2, Ps2+2 and

Ps3+2 by identifying an end vertex of each of these
three paths.

Ns1,s2,s3
= L(Ys1,s2,s3

)

Examples of Ys1,s2,s3
and Ns1,s2,s3
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Conditions Forbidding Paths And Nets

Theorem (Shepherd, PhD Thesis, U. of Waterloo,
1987) Every 3-connected {K1,3, N1,1,1}-free graph is
hamiltonian.

Theorem (Brousek, Ryjáček and Favaron, DM 1999)
Every 3-connected {K1,3, N0,0,4}-free graph is
hamiltonian.

Theorem (Luczak and Pfender, JGT 2004) Every
3-connected {K1,3, P11}-free graph is hamiltonian.
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How Far Can We Go?

Theorem (Xiong, Yan, Yan and HJL, JGT 2010) Every

3-connected {K1,3, N0,0,8}-free graph is hamiltonian.

L(P (10)′) is 3-connected, {K1,3, N0,0,9}-free,

non-hamiltonian.

L(P (10)′) is 3-connected, {K1,3, P12}-free, non-hamiltonian.

Open Problem (Xiong, Yan, Yan and HJL, JGT 2010) Is

L(P (10)′) the only type of non-hamiltonian 3-connected

{K1,3, N0,0,9}-free graph?

Theorem YES.

– p. 13/22
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Forbidding P12

Example Let F1 denote any graph in the following
family.
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L(F1) is 3-connected, P12-free but non-hamiltonian.
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Forbidding P12

Theorem Every 3-connected P12-free line graph L(G)

if hamiltonian if and only if G /∈ F1.

Corollary Let Γ be a 3-connected {K1,3, P12}-free
graph. Then Γ is hamiltonian if and only if its closure
cl(Γ) is not the line graph L(G), for any member G in
F1.
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Forbidding P13

We have also determine 4 (classes of) graphs
F1, F2, F3, F4 such that the following hold.

Theorem Every 3-connected P13-free line graph L(G)

if hamiltonian if and only if G /∈ F1 ∪ F2 ∪ F3 ∪ F4.

Corollary Let Γ be a 3-connected {K1,3, P13}-free
graph. Then Γ is hamiltonian if and only if its closure
cl(Γ) is not the line graph L(G), for any member G in
F1 ∪ F2 ∪ F3 ∪ F4.
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Forbidding general nets

Theorem Let s1, s2, s3 > 0 be integers such that
s1 + s2 + s3 ≤ 9.
(i) If s1 + s2 + s3 ≤ 9, every 3-connected
{K1,3, Ns1,s2,s3

}-free graph is hamiltonian.
(ii) If s1 + s2 ≤ 8, every 3-connected {K1,3, Ns1,s2,0}-free
graph is hamiltonian.
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4-connected line graphs: Former Results

Theorem Let L(G) be a 4-connected line graph. Each
of the following holds.
(i) (Chen, Lai and Weng, 1994) If G is claw-free, then
L(G) is hamiltonian.
(ii) (Kriesell, JCTB 2001) If G is claw-free, then L(G) is
hamiltonian-connected.
(iii) (Y. Shao, M. Zhan and HJL, DM 2008) If G is quasi
claw-free, then L(G) is hamiltonian-connected.
(iv) (Y. Shao, G. Yu, M. Zhan and HJL, DAM 2009) If G

is almost claw-free, L(G) is hamiltonian-connected.

Both QCF and ACF contain CF properly.

– p. 18/22
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4-connected line graphs: DCT and P3D

Graphs

For nonadjacent x, y ∈ V (G) with N(x) ∩ N(y) 6= ∅,
define

JG(x, y) = {u ∈ NG(x)∩NG(y) : NG[u] ⊆ NG[x]∪NG[y]},
and

J ′

G(x, y) = {u ∈ NG(x) ∩ NG(y) : v ∈ NG(u) − (NG[x] ∪

NG[y]) =⇒ NG(x)∪NG(y)∪NG(u)−{x, y, v} ⊆ NG(v)}.
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NG[y]) =⇒ NG(x)∪NG(y)∪NG(u)−{x, y, v} ⊆ NG(v)}.
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4-connected line graphs: DCT and P3D

Graphs

Definition: (Ainouche, Favaron and Li, DM 2008) G is
dominated claw toed (DCT) if for any claw [a, a1, a2, a3]

centered as a, JG(a1, a2) ∪ JG(a2, a3) ∪ JG(a1, a3) 6= ∅..

Definition: (Broersma and Vumar, Math. Methods
Oper. Res. 2009) G is P3-dominated (P3D) if for any
non adjacent x, y ∈ V (G) with N(x) ∩ N(y) 6= ∅,
JG(x, y) ∪ J ′

G(x, y) 6= ∅.

Each of DCT and P3D graphs properly contain QCF
and ACF.
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4-connected line graphs: New Results

Theorem Suppose κ(L(G)) ≥ 3 and L(G) does not
have an independent 3-vertex cut. Then
(i) If G is a DCT graph, then L(G) is hamiltonian.
(ii) If G is a P3D graph, then L(G) is hamiltonian.

Corollary:
(i) Every 4-connected line graph of a DCT graph is
hamiltonian.
(ii) Every 4-connected line graph of a P3D graph is
hamiltonian.
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Thank You
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